SILS
All biomaterials initiate a tissue response when implanted in living tissues. Ultimately this reaction causes fibrous encapsulation and hence isolation of the material, leading to failure of the intended therapeutic effect of the implant. There has been extensive bioengineering research aimed at overcoming or delaying the onset of encapsulation. Nanotechnology has the potential to address this problem by virtue of the ability of some nanomaterials to modulate interactions with cells and thereby inducing specific biological responses to implanted foreign materials. To this effect in the present study, we have characterised the growth of fibroblasts on nano-topography. We found that nano-topography inhibit cell cycle progression – without impairing cell viability – of NIH-3T3 fibroblast cells. This finding could be of relevance for biomedical applications designed to prevent or minimize fibrous encasement by uncontrolled proliferation of fibroblastic cells with loss of material-tissue interface underpinning long-term function of implants. On-going studies aims to elucidate the underlying mechanisms.
MAIN COLLABORATIONS
Prof Sir Prof Alfred Cuschieri, Surgeon, School of Medicine, University of Dundee, UK
PUBLICATIONS
Giannini, M. Giannaccini, T. Sibillano, C. Giannini, D. Liu, Z. Wang, A. Bau, L. Dente, A. Cuschieri, V. Raffa. Sheets of vertically aligned BaTiO3 nanotubes reduce cell proliferation but not viability of NIH-3T3 cells, PLOSone (2015) e115183 Vol 9 (12). IF: 3.534