
Lecture notes of SPACE MECHANICS

based on the notes for the SPACECRAFT ORBITAL DYNAMICS
AND CONTROL course of the University of Bologna

written by Dr. Elisa Maria Alessi and Dr. Dario Modenini

Academic Year 2018–2019
Lecturers: Prof. Giacomo Tommei and Dr. Stefano Marò





Contents

1 The Two-Body Problem 5
1.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 First Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Polar Equation for the Orbit . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 The Laplace Reference System . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Specific Energy and Semi-major Axis . . . . . . . . . . . . . . . . . . . . . 16
1.6 The Other Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8 Elliptic Case: Eccentric Anomaly . . . . . . . . . . . . . . . . . . . . . . . 25
1.9 Hyperbolic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.10 From Position and Velocity to Orbital Elements . . . . . . . . . . . . . . . 31
1.11 From Orbital Elements to Position and Velocity . . . . . . . . . . . . . . . 33
1.12 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.13 The f and g series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.14 Orbits at the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Orbital Perturbations 45
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Special Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 General Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Major Orbital Perturbations on Earth Satellites 59
3.1 Earth Gravitational Potential . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Atmospheric Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Solar Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4 Third-Body Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Orbital Transfers 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Tsiolkowsky’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Impulsive Coplanar Transfers . . . . . . . . . . . . . . . . . . . . . . . . . 92



4

4.4 Impulsive Non-coplanar Transfers . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Coplanar Continuous Thrust Transfers . . . . . . . . . . . . . . . . . . . . 99

5 Interplanetary Trajectories 105
5.1 Patched Conic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Sphere of Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Gravity Assist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4 From the Earth to Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 The Lambert’s Theorem 117
6.1 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Locus of the Vacant Foci . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3 Geometrical Interpretation of α and β . . . . . . . . . . . . . . . . . . . . 122
6.4 How to Solve the Lambert’s Problem . . . . . . . . . . . . . . . . . . . . . 125

References 129



The Two-Body Problem 1

The Two–Body Problem is the easiest model that can be adopted for describing the
motion of two bodies subject to the mutual gravitational attraction. Its assumptions
and derivations apply both for natural and artificial bodies, for instance, to study the
motion of a planet around the Sun or a spacecraft around a planet. This dynamical
model represents the only case in astrodynamics which admits a general solution, as
there exist at least sixth first integrals. Moreover, though it does not comprehend all
the forces playing a role, it still provides a good initial approximation for more precise
analysis, because the other effects are some orders of magnitude lower on condition to
be far enough to any other massive bodies.
Here, we will consider the Kepler’s Problem or Restricted Two–Body Problem, whose
main hypothesis is that one of the two bodies has a mass so small that it does not affect
the motion of the other body, which therefore is at rest. An example of this situation is
represented by a satellite (m ≈ 103 kg) orbiting around the Earth (m ≈ 1024 kg), which
is assumed spherical with a radially symmetrical internal distribution of mass.

1.1 Equation of Motion

Let us consider two isolated point masses m and M , respectively, such that m ≪ M .
The only force acting on the system is the mutual gravitational attraction between the
two bodies: m moves due to the gravitational force exerted by M , which is at rest.
To study the problem, let us consider an inertial reference system {̂i, ĵ, k̂}, whose origin
is fixed where M is located (see Fig. 1.1). The position and the velocity of the mass
m in this framework are r and v. By applying the Newton’s Second Law of Motion,
namely,

F = mI
d2r

dt2
, (1.1)

to the gravitational attraction due to M we obtain

mI
d2r

dt2
= −GMmG

r2
r̂, (1.2)

where r̂ = r/r is the radial unit vector, G = 6.67259 × 10−1 m3kg−1s−2 is the Grav-
itational Constant and mI and mG are the inertial and gravitational mass associated
with the second body, respectively. Following the Equivalence Principle according to
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Figure 1.1: The Restricted Two–Body Problem in an inertial reference system centered at
the body with the most significant mass.

mI = mG, we have
d2r

dt2
= − µ

r2
r̂, (1.3)

where µ = GM is the so-called gravitational parameter. In the case of the Earth µ⊕ ≈
398604.3 km3/s2.
We notice that to assume mI = mG = m implies that the acceleration acting on a body
moving in a gravitational field does not depend on its mass: this is what Galileo showed
with the well-known experiment of the falling bodies from the leaning tower in Pisa.
Moreover, from Eq. (1.3) we see that the acceleration is always aligned with the radial
direction, that is, the gravitational field is a central field. The gravitational attraction
exerted by the Earth on a body on the terrestrial surface is

g =
µ

R2⊕ ≈ 9.8 m/s2, (1.4)

being R⊕ ≈ 6378 km the equatorial radius of the Earth.

1.2 First Integrals

The equation of motion (1.3) is a non linear differential system of the second order. It
follows that, to obtain a general solution and thus be able to describe the motion of the
second body, we need 6 boundary conditions. If these are given at the initial time t0,
we deal with a Cauchy problem which admits a unique solution. In particular, we can
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define the Cauchy problem as

d2r

dt2
= − µ

r2
r̂, r(t0) = r0, v(t0) = v0. (1.5)

If instead we have some boundary conditions at time t0 and some at time t1, we speak
of Lambert problem or two-point boundary value problem. For instance, we can have

d2r

dt2
= − µ

r2
r̂, r(t0) = r0, r(t1) = r1. (1.6)

In this case, a general solution may not exist nor be unique. To show this, let us consider
the linear differential equation

mẋ = −kx,

which describes a harmonic motion with frequency ω =
√
k/m. The boundary conditions

are required to define the phase and the amplitude of the motion. If they are of the kind

x(t0) = x0, x(t0 + T ) = x1,

where T = 2π/ω is the period of the motion, then the problem results to be either
impossible or undetermined. The first case occurs if x1 ̸= x0, because after one period
the variable must take the same value. If instead x1 = x0 we deal with two equivalent
conditions.
Let us now go back to the Kepler’s problem written in (1.5) and let us look for 6 first
integrals in order to solve it.

1.2.1 The Specific Angular Momentum

If we cross multiply the differential equation (1.3) by r, we get

r× d2r

dt2
= − µ

r2
r× r̂ = 0, (1.7)

because r and r̂ are aligned on the same direction. It follows that also the acceleration
vector d2r

dt2
is directed along the radius vector r, that is, we deal with a central field.

Now, let us sum on the left-hand side of (1.7) the null term dr
dt ×

dr
dt , namely,

r× d2r

dt2
+
dr

dt
× dr

dt
=

d

dt

(
r× dr

dt

)
= 0,

which integrated gives

r× dr

dt
= h, (1.8)

where h is a constant (in modulus and direction) vector, called specific angular momen-
tum, that is, the angular momentum per unit of mass. As a consequence, the Keplerian
motion is a planar problem in the sense that the motion takes plane on the invariant
plane defined by r · h = 0. This plane contains the central body and is perpendicular to
the vector h. Clearly, the radius and the velocity vectors are always orthogonal to the
direction of h.
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Figure 1.2: The planar reference system and the polar coordinates corresponding to the
Two–Body Problem.

Polar Coordinates

Let us consider the polar reference system displayed in Fig. 1.2, where the position of
the small body is defined by the two coordinates (r, θ). This is a non inertial reference
frame, defined on the plane of the Keplerian motion in such a way that the pole coincides
with the position of the central body and the polar axis with one of the semi-axes of the
inertial reference system introduced before (see Fig. 1.1). The unit vectors of the system
are one, say r̂, directed along r and the other, say θ̂, perpendicular to r̂ and aligned
along the direction of increasing θ. They can be expressed as

r̂ = cos θ̂i+ sin θ̂j, θ̂ = − sin θ̂i+ cos θ̂j. (1.9)

Since they are constant in modulus and the polar reference system rotates with respect
to the inertial one with angular velocity w directed along h but with modulus w = θ̇
not necessarily constant, the corresponding time derivatives are

dr̂

dt
= w × r̂ = θ̇θ̂, (1.10)

and
dθ̂

dt
= w × θ̂ = −θ̇r̂. (1.11)
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The radius and velocity vectors in the inertial plane are

r = r cos θ̂i+ r sin θ̂j,
dr

dt
≡ ṙ = ṙ(cos θ̂i+ sin θ̂j) + rθ̇(− sin θ̂i+ cos θ̂j), (1.12)

which can be written in the polar frame as

r = rr̂, ṙ = ṙr̂+ rθ̇θ̂. (1.13)

We notice that the velocity vector is decomposed in the radial and transversal compo-
nents, namely,

vr = ṙ, vθ = rθ̇. (1.14)

The modulus of the velocity vector is

v =
√
v2r + v2θ . (1.15)

Now, by means of Eqs. (1.8) and (1.13) we get to

h = rr̂×
(
ṙr̂+ rθ̇θ̂

)
= r2θ̇

(
r̂× θ̂

)
,

that is,
h = r2θ̇. (1.16)

The acceleration vector is computed by deriving the velocity vector and reads

d2r

dt2
≡ r̈ = r̈r̂+ ṙ

dr̂

dt
+ (ṙθ̇ + ṙθ̈)θ̂ + rθ̇

dθ̂

dt
= (r̈ − rθ̇2)r̂+ (2ṙθ̇ + rθ̈)θ̂. (1.17)

The radial and transversal components in this case are

ar = r̈ − rθ̇2, aθ = 2ṙθ̇ + rθ̈. (1.18)

As we have seen before, the Kepler’s problem is a central problem and thus, using Eq.
(1.18), the equation of motion (1.3) in polar coordinates becomes{

r̈ − rθ̇2 = − µ
r2
,

2ṙθ̇ + rθ̈ = 0.
(1.19)

1.2.2 The Eccentricity Vector

Now let us cross multiply Eq. (1.3) by h and sum the null term ṙ× ḣ on the left-hand
side:

r̈× h+ ṙ× ḣ = − µ

r2
r̂× h,

that is, using (1.10) and (1.16),

d

dt
(ṙ× h) =

µh

r2
θ̂ = µθ̇θ̂ = µ

dr̂

dt
= µ

d

dt

(r
r

)
.
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By integration of this expression, we obtain

ṙ× h− µ
r

r
= µe, (1.20)

where e is a constant non dimensional vector, called Laplace vector or Runge–Lenz vector
or eccentricity vector.
Having now two first integrals, h and e, both three-dimensional vectors, we may think
to be able to solve the Kepler’s problem. Actually, h and e are not independent, because
they are orthogonal and in particular satisfy

h · e = 0. (1.21)

Therefore they provide only 5 independent integration parameters.
We notice that the angular momentum h defines the orbital plane where e lies. We will
see that e defines instead the geometry of the orbit in the plane, in particular its shape
(circular, elliptic, ..), direction (through the line of apsides) and the pericenter direction.

1.2.3 The Specific Mechanical Energy

Let us dot multiply Eq. (1.3) by ṙ:

r̈ · ṙ = − µ

r2
r̂ · ṙ,

that is,
d

dt

(
ṙ · ṙ
2

)
+
µ

r3
d

dt

(r · r
2

)
= 0.

By integrating this expression, using the properties of the scalar product and recalling
that ||ṙ|| = v, we get to

v2

2
− µ

r
= E , (1.22)

where E is another constant of the motion and it represents the specific mechanical
energy of the moving body, that is, the energy per unit of mass. Looking to Eq. (1.22),
it is clear that the first term is related to the kinetic energy, the second to the potential
one.

1.3 The Polar Equation for the Orbit

Let us dot multiply the eccentricity vector by r:

r · e = r ·
(
ṙ× h

µ

)
− r · r

r
,
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and recall that in general for the scalar triple product we have a · (b× c) = (a× b) · c.
By using the properties of the scalar product, we find

r · e+ r · r
r

= (r× ṙ) · h
µ
,

=⇒ re cos θ + r = h · h
µ
,

=⇒ r(e cos θ + 1) =
h2

µ
, (1.23)

where e is the eccentricity and θ is the angle going from the eccentricity vector to the
radius vector and it is called true anomaly.
From Eq. (1.23), we obtain the polar equation of the orbit, namely,

r =
p

1 + e cos θ
, (1.24)

where p = h2/µ is a geometrical constant of the orbit, called parameter or semi-latus
rectum. We notice that the true anomaly is one of the polar coordinates introduced
before and it is related to the time.
Eq. (1.24) represents the equation of a conic section, which means that an object moving
under the hypotheses of the Two–Body Problem can only orbit on a curve of this kind.
A conic section is, by definition, the locus of a point which moves in a such a way that
the ratio of its distance from a given point, called focus, and its distance from a given line,
called directrix, is a positive constant. This constant is, in particular, the eccentricity of
the conic. To prove that, let us refer to Fig. 1.3 and call for the moment the constant
K = r/d = r1/d1. We have

r1 + d1 = r cos θ + d,

=⇒ d1

(
r1
d1

+ 1

)
= d

(
r cos θ

d
+ 1

)
,

=⇒ d1(K + 1) = d(K cos θ + 1),

=⇒ d

d1
=

1 +K

1 +K cos θ
,

=⇒ r

r1
=

1 +K

1 +K cos θ
,

=⇒ r =
r1(1 +K)

1 +K cos θ
.

Because of the way we have defined r1, the associated true anomaly θ1 is 0 and thus,
using (1.24), the expression just derived becomes

r =

(
p

1 + e cos θ1

)(
(1 +K)

1 +K cos θ

)
=

(
p

1 + e

)(
(1 +K)

1 +K cos θ

)
.

From (1.24) we have

r =
p

1 + e cos θ
=

(
p

1 + e

)(
(1 +K)

1 +K cos θ

)
,
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Figure 1.3: The definition of a conic section.

which is satisfied if and only if K = e.
According to the value assumed by e, we can distinguish among different kinds of conic
section. We deal with

• a circle if e = 0;

• an ellipse if 0 < e < 1;

• a parabola if e = 1;

• an hyperbola if e > 1.

As we will see, in the first two cases the specific energy of the orbiting body is negative,
which means that it cannot escape from the gravitational field of the central body. In
the second case, the specific energy is zero, and in the last one is positive.
Historically, there exists another definition for a conic section, that is, as the curve of
intersection of a plane with a right circular cone (see Fig. 1.4). We have:

• an ellipse if the intersection takes place on one half of the cone;

• a circle if the intersection takes place on one half of the cone and the plane is
parallel to the base of the cone;
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Figure 1.4: The definition of a conic section as the curve of intersection of a plane with a
right circular cone.

• a parabola if the intersection takes place on one half of the cone and the plane is
parallel to a line in the surface of the cone;

• a hyperbola if the plane cuts both halves of the cone.

There is also the possibility to deal with degenerate conics, if the intersection is a point
and one or two straight lines.
Each type of conic section has two foci, say F and F ∗. The first one F has a physical
meaning, in the sense that it is where the attracting body is located. The second one
F ∗ has just a geometrical meaning and in Sec. 6.2 we will see how to identify it, in the
case of the ellipse. For the parabola, it is at an infinite distance with respect to F , while
in the case of the hyperbola we have two branches, each of them corresponding to one
different focus.

1.3.1 Elliptical Orbit

In Cartesian coordinates the equation of a generic ellipse with respect to the origin reads

x2

a2
+
y2

b2
= 1, (1.25)

where a and b are the semi-major axis and semi-minor axis, respectively. In general,
the length of the chord passing through the two foci is the major axis 2a of a conic
section. The line passing through the foci is called line of the apsides and the points
of intersection between this line and the ellipse are said pericenter and apocenter. The
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Figure 1.5: Semi-major axis, semi-minor axis and foci of an ellipse.

former is the closest point of the orbit to the focus F , the latter the farthest. In Tab.
1.1, we specify these distances by means of (1.24) and Fig. 1.5. They can be used to
compute the value of the eccentricity, namely,

p = rp(1 + e) = ra(1− e), =⇒ e(rp + ra) = ra − rp,

that is,
e =

ra − rp
rp + ra

. (1.26)

From Fig. 1.5, we have that the semi-major axis is given by

a =
rp + ra

2
. (1.27)

From Tab. 1.1 and Eqs. (1.26)–(1.27) it follows

ra = a(1 + e), rp = a(1− e). (1.28)

Concerning the semi-focal distance f = OF = OF ∗, we have

OF = a− rp =
ra + rp

2
− rp =

ra − rp
2

=

(
ra − rp
ra + rp

)(
ra + rp

2

)
= ea,

that is,
f = ea. (1.29)
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Definition θ r

Pericenter Radius rp 0 p
1+e

Apocenter Radius ra π p
1−e

Semi-latus Rectum π/2 p

Table 1.1: Absolute value of the radius vector and true anomaly associated with the peri-
center, apocenter and semi-latus rectum for an ellipse.

To compute the semi-minor axis b we recall that an ellipse can also be defined as the
locus of a point such that the sum of the distances between the point and the foci is
constant, i.e.,

PF + PF ∗ = constant, =⇒ rp + (rp + 2f) = 2rp + 2f = 2a(1− e) + 2ae = 2a.

This means that any point Q lying on the ellipse fulfills the condition

QF +QF ∗ = 2a. (1.30)

In particular, if we consider the point B such that b = OB, then we also have (see Fig.
1.5) that BF = BF ∗ and thus BF = BF ∗ = a because of (1.30). Thus it turns out that

b = OB =
√
BF 2 −OF 2 =

√
a2 − a2e2 = a

√
1− e2, (1.31)

which in modulus is valid for any type of conic section, except the parabola. From Tab.
1.1 and Eq. (1.28) we can derive the semi-latus rectum p as

p = a(1− e2), (1.32)

which is a valid expression for any type of conic section, except the parabola.

1.4 The Laplace Reference System

Let us define the Laplace reference system {e,p,h} in the following way:

• the x−axis corresponds to the direction defined by the eccentricity vector;

• the y−axis is obtained by rotating the x−axis counterclockwise by an angle equal
to π/2 (see Fig. 1.5);

• the z−axis is directed along the angular momentum vector h.

If we rewrite Eq. (1.20) as

e+ r̂ = − 1

µ
(h× ṙ) ,
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and cross multiply it by h, namely,

h× (e+ r̂) = − 1

µ
h× (h× ṙ) ,

using the properties of the triple cross product a× (b× c) = (a · c)b− (a · b) c and the
fact that h and ṙ are orthogonal, we obtain

h× (e+ r̂) = − 1

µ

[
(h · ṙ)h− h2ṙ

]
=
h2

µ
ṙ,

that is,
ṙ =

µ

h
ĥ× (e+ r̂) . (1.33)

Since
ĥ× ê = p̂, ĥ× r̂ = θ̂, (1.34)

we get to
ṙ =

µ

h

(
ep̂+ θ̂

)
. (1.35)

The above relationship tells us that the velocity of a small body moving on an ellipse
can be decomposed in two components, both constant in modulus, namely,

• a vector of modulus µe/h along the orthogonal direction corresponding to the
semi-major axis and towards increasing true anomaly;

• a vector of modulus µ/h along the orthogonal direction to the radius vector in the
orbital plane.

In the particular cases of the pericenter and the apocenter, the two units vectors p̂ and θ̂
are along the same direction and there does not exist a radial component of the velocity.
Therefore,

vp =
µ

h
(1 + e) =

√
µ

a

(
1 + e

1− e

)
, va =

µ

h
(1− e)

√
µ

a

(
1− e

1 + e

)
, (1.36)

being the speed at the pericenter the maximum possible, the one at the apocenter the
minimum.

1.5 Specific Energy and Semi-major Axis

We can use the just derived expressions for the radius and speed at pericenter and
apocenter to obtain a different expression for the energy associated with the orbit. This
can be computed at any point, as it is a constant of motion. Let us choose the pericenter
for which Eq. (1.22) reads

E =
v2p
2

− µ

rp
=

µ2

2h2
(1 + e)2 − µ

a(1− e)
=

µ2

2pµ
(1 + e)2 − µ

a(1− e)
=

=
µ

2a(1− e2)
(1 + e)2 − µ

a(1− e)
=

µ

2a(1− e)
(1 + e)− 2µ

2a(1− e)
=

= − µ

2a
. (1.37)
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In other words, the energy depends only on the semi-major axis of the orbit.
In an analogous way, we can find the relationship between the energy and the eccentricity
of the orbit, namely,

E =
v2p
2

− µ

rp
=

µ2

2h2
(1 + e)2 − µ

a(1− e)
=

µ2

2h2
(1 + e)2 − µ

p
(1 + e) =

=
µ2

2h2
(1 + e)2 − µ2

h2
(1 + e) =

µ2

2h2
(
1 + e2 + 2e− 2− 2e

)
=

= − µ2

2h2
(1− e2), (1.38)

that is,

e =

√
1 +

2Eh2
µ2

. (1.39)

Because of that, the energy integral does not provide any further information with respect
to the other first integrals found, namely the angular momentum h and the eccentricity
vector e.

1.6 The Other Conic Sections

Let us take advantage of (1.37) to understand how to discriminate among the different
conic sections, that is, when the satellite will move on one or another. On an elliptic orbit,
the semi-major axis is positive and therefore the energy is negative. For the parabola,
the semi-major axis takes value infinity by definition and, as a consequence, the energy
is zero: in some sense we can think to an ellipse whose semi-major axis tends to increase
indefinitely. In the hyperbolic case, the semi-major axis is negative and assumes only a
geometrical meaning, not a physical one, and thus the corresponding energy is positive.
From a physical point of view, this distinction can be made by thinking whether it is
necessary to provide energy to the spacecraft to make it escape from the gravitational sink
of the Earth. In the case of more attracting bodies, the various gravitational sinks sum
up and the energy required by the spacecraft to move from an orbit of semi-major axis
a1 to another of semi-major axis a2 depends on all the gravitational fields it experiences.

1.6.1 Circular Orbit

The circular orbit is a special case of the elliptical one, in the sense that e = 0 and the
velocity vector is always perpendicular to the radius vector, i.e., we do not have a radial
component. Also, the semi-major axis a is equal to r, which is constant in time, and the
specific mechanical energy is

v2circ
2

− µ

r
= − µ

2r
, (1.40)

that is, the modulus of the velocity is constant as well

vcirc =

√
2µ

r
− µ

r
=

√
µ

r
, (1.41)
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Figure 1.6: The parabola.

and it is called first cosmic velocity.
The larger the distance to the central body, the lower the velocity required to move on
a circular orbit. The maximum value takes place (ideally) on zero-altitude orbit and for
the case of the Earth is

v∗circ =

√
µ⊕
R⊕ ≈ 7.9

km

s
. (1.42)

1.6.2 Parabolic Orbit

The parabolic orbit is characterized by e = 1 and E = 0. This means that the small body
approaches the central one from infinity to go then toward infinity as well. The semi-
major is by definition equal to ∞, the focus coincides with the origin and the parameter
p is the distance between the focus and the directrix (see Fig. 1.6). We also have

rp ≡ r(θ = 0) =
p

2
. (1.43)

In Cartesian coordinates the equation of the parabola is

y2 = 2p

(
1

2
p− x

)
. (1.44)

Again exploiting the energy equation (1.37), we can compute the velocity on a parabolic
orbit for a given radius vector, namely,

vpar =

√√√√2µ

r
−

�
���
0
µ

a
=

√
2µ

r
=

√
2vcirc, (1.45)
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where vcirc is the velocity on a circular orbit of radius r.
If the velocity is evaluated at the pericenter of the parabola, we speak about second
cosmic velocity or escape velocity, because it represents the minimum velocity required
by a small body to move off from the central gravitational field. When the effect of the
gravitational field considered becomes negligible with respect to other forces, we say that
the body has approached infinity : the escape velocity allows to get there. For satellites
orbiting around the Earth, this distance corresponds to about 106 km and the escape
velocity is maximum on the surface of the Earth and its value is

v∗par =
√
2v∗circ ≈ 11.2

km

s
. (1.46)

At infinity the residual velocity on the parabola is zero. Indeed, let us consider the case
h = 0. This configuration occurs when ṙ is parallel to r: these are the straight line
orbits already introduced at the beginning of the section by means of Fig. 1.4. Let us
assume to be on the surface of the Earth and to launch a body along the radial direction.
According to the velocity given to the body, this will move on a different path. If the
velocity is lower than a certain value, then it will reach a maximum altitude and then fall
back to the Earth. This is the case of the rectilinear ellipse. There exists a well-defined
value of the initial velocity such that the maximum altitude is attained at ‘infinity’: in
this case the body will not fall back to the Earth, but stay there at rest. This is the
rectilinear parabola. If, instead, the velocity is larger than the threshold, then the body
will approach infinity with a non-zero velocity and its orbit will resemble the hyperbolic
one.

1.6.3 Hyperbolic Orbit

For the hyperbolic we have e > 1 and E > 0. From the energy equation (1.37) we get
a < 0. Let us set a = −a′ where a′ = |a|. We will see that the negative semi-major
axis does not have a physical meaning, but its modulus has a well-defined geometrical
interpretation. Since a < 0 and e > 1, the parameter p is positive as we expect, because
it is related to the angular momentum h =

√
µp. Concerning the semi-minor axis b,

since 1− e2 < 0, we have

b = ja
√
e2 − 1 = −ja′

√
e2 − 1 = −jb′, (1.47)

where j is the imaginary unit and b′ = a′
√
e2 − 1 > 0.

The Cartesian equation of the hyperbola, in a reference system with origin at the center
of symmetry, is

x2

a′2
− y2

b′2
= 1. (1.48)

The hyperbola is composed by two different branches. Once we fixed the main focus
F , the small body will be able to move only on the closest branch to F , because the
gravitational field is attractive and not repulsive (see Fig. 1.7). The pericenter distance
is again

rp =
p

1 + e
= a′(e− 1), (1.49)
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Figure 1.7: The hyperbola.

and the corresponding velocity is derived from the energy equation, namely,

v =

√
2µ

r
+
µ

a′
=⇒ vp =

√
µ

a′
e+ 1

e− 1
, (1.50)

which is larger than the escape velocity computed at the same altitude.
In the hyperbolic case, the residual velocity at infinity is called third cosmic velocity or
hyperbolic excess velocity and is

v∞ = lim
r−→∞

v =

√
µ

a′
. (1.51)

Its direction is defined by the asymptote and corresponds to the true anomaly θ∞, as
shown in Fig. 1.7. In other words, at infinity we have

r −→ ∞ =⇒ 1 + e cos θ∞ −→ 0,

that is,

cos θ∞ = −1

e
. (1.52)

Moreover, the angle between the two asymptotes δ is called deflection angle and we have
(see Fig. 1.7)

−1

e
= cos θ∞ = cos

(
π

2
+
δ

2

)
= − sin

δ

2
,
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Figure 1.8: The geometrical meaning of the parameter b′ for the hyperbola.

that is,

sin
δ

2
=

1

e
. (1.53)

Let us refer to Fig. 1.8. The semi-focal distance in the hyperbolic case is

f = a′e. (1.54)

The geometrical meaning of a′ is the distance OA from the pericenter to the point of the
intersection of the asymptotes. Indeed, we have

f = OF = OA+AF = OA+rp = OA+a′(e−1) = OA+a′e−a′ = ae =⇒ OA = a′.

In the same figure we have drawn the segment AC perpendicular to the x−axis, i.e.,
the line joining the two foci, and the one FB perpendicular to one asymptote. The two
triangles OAC and OBF are equivalent, because the both have a right angle, they share
the angle in O and the two sides OA and OB are equal. Therefore,

CA = FB =
√
OF 2 −OB2 =

√
f2 −OA2 =

√
a′2e2 − a′2 = a′

√
e2 − 1 = b′.

This is also said impact parameter.
Analogous to the case of the ellipse, the hyperbola can also be defined as the locus of a
point such that the difference of the distances between the point and the foci is constant,
i.e.,

QF −QF ∗ = 2a′.
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Figure 1.9: The pseudo-inertial reference system for a satellite orbiting around the Earth.

1.7 Orbital Elements

So far we have shown that, if we know the shape of the orbit, the motion of the small
body can be described easily with respect to one of the reference systems defined by its
orbit. We have proved that the orbital plane is constant, now we have to situate it with
respect to a physical framework. This can be done by referring the {e,p,h} directions
to a pseudo-inertial {Î, Ĵ, K̂} frame.
Let us consider the case of a satellite orbiting around the Earth. What follows will
hold in general, for instance also for a planet moving around the Sun, in that case the
reference plane will be the ecliptic one (see also Sec. ??). The pseudo-inertial reference
system can be set in this way (see Fig. 1.9):

• the origin is at the center of the Earth;

• the X−axis is placed in the Earth’s equatorial plane and points toward the First
Point of Aries �;

• the Z−axis is aligned along the Earth’ spin axis and thus it is orthogonal to the
X−axis;

• the Y−axis completes the right-handed coordinate system.
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Figure 1.10: The rotations to define the local orbital reference system with respect to the
pseudo-inertial one.

The reference system is said ‘pseudo-inertial’ and not inertial, because the origin orbits
around the Sun.
We need to perform 3 rotations and thus 3 parameters are required to move from the
pseudo-inertial reference system to the one defined by {e,p,h}. Let us start from the
{Î, Ĵ, K̂} coordinate system and use the classical Euler angles, in particular those called
3− 1− 3 in astrodynamics. The transformation required consists in (see Fig. 1.12):

1. a rotation around the Z−axis of an angle Ω, called longitude of the ascending node,
in such a way that the first axis coincides with the line of nodes N and the reference
axes are {N,M, K̂};

2. a rotation around N of an angle i, called inclination of the orbital plane, in such
a way that the third axis is aligned along h and the reference axes are {N,M′,h};

3. a rotation around h of an angle ω, called argument of pericenter, and we get to
{e,p,h}.

We notice that the first two rotations locate the orbital plane, while the third one helps
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to define the position of the orbit in the plane.
The line of nodes is the line of intersection between the orbital plane and the reference
plane (in our case the Earth’s equatorial one) and clearly goes always through the center
of the main body, i.e., the Earth in our case. The angle Ω ∈ [0◦, 360◦] is said longitude
of the ascending node because, for 90◦ > i > 0◦, the satellite passes through it by ‘going
upward’. Opposite to the ascending node on the same line, we have the descending node.
The argument of pericenter ω ∈ [0◦, 360◦] tells us how far the pericenter is from the line
of nodes, while the inclination i ∈ [0◦, 180◦] quantifies how much the orbital plane is
tilted with respect to the reference one. If 90◦ > i > 0◦, then the small body moves
counterclockwise and the orbit is said prograde, if 180◦ > i > 90◦, then we speak of
retrograde orbit and the motion occurs clockwise. Polar orbits are such that i = 90◦.
If instead i = 0◦, then the line of nodes cannot be defined nor Ω and the orbit, for an
object moving around the Earth, is equatorial. On the other hand, if e = 0, that is,
we deal with a circular orbit, then ω is not defined. To overcome these singularities,
we can introduce new angular variables, in particular the longitude of the pericenter as
ω̃ = ω+Ω. There exist other possibilities, for instance, the equinoctial orbital elements,
which have the advantage to be not singular.
So far we have faced the Two–Body Problem from a geometrical point of view, demon-
strating that the motion of the small body takes place on a conic section. If we focus on
the specific case of the ellipse, its size and shape can be derived from the semi-major axis
a and eccentricity e, while its orientation in space from the Euler angles Ω, i, ω. These
5 parameters are also known as Lagrangian Parameters. We notice that it is equivalent
to define the ellipse by means of these independent parameters or by means of h and e,
which we proved (see Sec. 1.2) provide 5 independent parameters as well. As a matter
of fact (see also Sec 1.11),

• from h it is possible to compute i and Ω and from ||h|| we obtain p = h2/µ and
then a = p/(1− e2), where e = ||e||;

• from e the pericenter direction is obtained using the dot and the cross products
with the direction of the line of nodes.

1.7.1 Time of Pericenter Passage

Let us look for the sixth parameter, which allows to link the position and velocity on
the orbit to a given instant of time. Indeed both r and v depends on t through θ. From
(1.16) and (1.24) we have

dθ

dt
= h

(1 + e cos θ)2

p2
,

which integrated gives

t− t0 =
p2

h

∫ θ

θ0

1

(1 + e cos θ)2
dθ. (1.55)

Let us take as reference position the pericenter, that is, θ0 = 0. The time t0 is then said
time of pericenter passage and it is denoted by τ0. If we know this parameter, then we
can solve the problem and associate a value of time to each value of true anomaly.
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1.7.2 Circular Case

If the orbit is circular, i.e., e = 0, then

t− τ0 =
a2

h

∫ θ

θ0

dθ =
a2

√
aµ

(θ − θ0) =

√
a3

µ
(θ − θ0) . (1.56)

In a period T , we sweep an angle equal to 2π and thus

T = 2π

√
a3

µ
. (1.57)

1.7.3 Parabolic Case

Let us consider the case of the parabolic orbit is parabolic, i.e., e = 1, and rewrite Eq.
(1.55)

t− τ0 =
p2

√
pµ

∫ θ

0

1

(1 + cos θ)2
dθ. (1.58)

By using the trigonometric identity 1 + cos θ = 2 cos2 θ
2 , the integral above results in∫ θ

θ0

1

(1 + cos θ)2
dθ =

∫ θ

θ0

1

4 cos4 θ
2

dθ =
1

2

∫ θ

θ0

1

cos2 θ
22 cos

2 θ
2

dθ =

=
1

2

∫ θ

θ0

cos2 θ
2 + sin2 θ

2

cos2 θ
2

1

2 cos2 θ
2

dθ =

=
1

2

∫ θ

θ0

(
1 + tan2

θ

2

)
1

2 cos2 θ
2

dθ =

=
1

2

∫ θ

θ0

1

2

(
1 + tan2

θ

2

)2

dθ =

=
1

2

∫ θ

θ0

(
1 + tan2

θ

2

)
d

(
tan

θ

2

)
,

and in this way we find the Barker’s Equation

t− τ0 =
1

2

√
p3

µ

(
tan

θ

2
+

1

3
tan3

θ

2

)
. (1.59)

Given θ is easy to solve for t, but the inverse procedure requires to solve a cubic equation.

1.8 Elliptic Case: Eccentric Anomaly

For the elliptic orbit, i.e., 0 < e < 1, we need to define a new reference system and a
new geometrical definition for this conic section. We have already seen the equation in
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Figure 1.11: The definition of eccentric anomaly.

Cartesian coordinates (1.25) and in polar ones (1.24), now we will derive the parametric
form. Let us consider Fig. 1.11, where we have drawn the circumscribed circle to the
ellipse of radius a and the inscribed one of radius b, both with origin at the center of the
ellipse. The line parallel to the semi-minor axis and passing through a given point P on
the ellipse intersects the outer circle in Q, while the line parallel to the semi-major axis
and passing through P intersects the inner circle in S. The origin and the points Q and
S belong to the same line, which can be defined by the central angle E, which is called
eccentric anomaly. Using this angle, the coordinates of any point P on the ellipse with
respect to the origin are

x = a cosE, y = b sinE. (1.60)

We notice that by adding up the squares of the two coordinates we find Eq. (1.25).
Let us derive r as a function of E instead of θ. From the same figure and Eq. (1.24),
the x−coordinate is

x = a cosE = OF + r cos θ = ae+ r cos θ = ae+
p− r

e
.

If we multiply by e, then

ae cosE = ae2 + p− r = ae2 + a(1− e2)− r,
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that is,
r = a (1− e cosE) , (1.61)

which tells us that r depends linearly on cosE, but is inversely proportional to cos θ.

1.8.1 True Anomaly and Eccentric Anomaly

Let us look for the relationship linking the eccentric anomaly to the true anomaly. We
have already seen that

x = a cosE = ae+ r cos θ, y = b sinE = r sin θ, (1.62)

from which it follows, using the polar equation of the orbit (1.24),

cosE = e+
1− e2

1 + e cos θ
cos θ =

e(1 + e cos θ) + (1− e2) cos θ

1 + e cos θ
=
e�����
+e2 cos θ + cos θ�����−e2 cos θ

1 + e cos θ
,

sinE =
a(1− e2)

a
√
1− e2

sin θ

1 + e cos θ
,

that is,

cosE =
e+ cos θ

1 + e cos θ
, sinE =

√
1− e2 sin θ.

1 + e cos θ
. (1.63)

Moreover, the first expression in (1.62) can be written using (1.61) as

r + r cos θ = r + a cosE − ae =⇒ r(1 + cos θ) = a (1− e cosE) + a cosE − ae,

=⇒ 2r cos2
θ

2
= a− ae cosE + a cosE − ae,

=⇒ 2r cos2
θ

2
= a(1− e) cosE + a(1− e) = a(1− e) (1 + cosE) ,

=⇒ 2r cos2
θ

2
= 2a(1− e) cos2

E

2
, (1.64)

because in general 1 + cosα = 2 cos2 α
2 . The second expression in (1.62), using sinα =

2 sin α
2 cos α

2 , becomes instead

2r sin
θ

2
cos

θ

2
= 2b sin

E

2
cos

E

2
. (1.65)

From the ratio between (1.65) and (1.64) we get

tan
θ

2
=

√
1 + e

1− e
tan

E

2
. (1.66)

It turns out that we always have θ > E and that θ
2 and E

2 belong to the same quadrant.
For sake of completeness, we give also the expressions for the radial and transversal
components of the velocity both in terms of true and eccentric anomaly, namely,

vr =
√

µ
a(1−e2)

e sin θ =
√

µ
a

e sinE
1−e cosE ,

vθ =
√

µ
a(1−e2)

(1 + e cos θ) =

√
µ(1−e2)

a
1

1−e cosE .
(1.67)
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1.8.2 Kepler’s Equation

Let us see how the eccentric anomaly varies with time. If we derive with respect to time
Eq. (1.61) we find

ṙ = aeĖ sinE. (1.68)

Now let us project the velocity (1.35) onto the radial direction, namely,

ṙ = ṙ · r̂ =
µ

h

(
ep̂ · r̂+ θ̂ · r̂

)
.

Since θ̂ · r̂ = 0, we have (see also (1.67))

ṙ =
µ

h
e cos

(π
2
− θ

)
=
µ

h
e sin θ. (1.69)

From (1.60), we get then

sin θ =
b

r
sinE =⇒ ṙ =

µeb

hr
sinE,

which combined with (1.68) gives

Ė =
µb

ahr
, (1.70)

which can be written also either as

Ė =
h

b

1

r
, (1.71)

or

Ė =

√
µ

a

1

r
. (1.72)

It is interesting to notice that Ė is proportional to 1/r, while θ̇ to 1/r2 (see Eq. (1.16)).
By plugging (1.61) into (1.72) we obtain

dt =

√
a3

µ
(1− e cosE) dE, (1.73)

which can be integrated to get to

t− τ0 =

√
a3

µ
(E − e sinE) , (1.74)

where τ0 is the value of time corresponding to E = 0, that is, the pericenter as before.
Let us define the mean anomaly as

M =

√
µ

a3
t, (1.75)

in such a way that (1.74) can be written as

M −M0 = E − e sinE, (1.76)

which is said Kepler’s equation.
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1.8.3 How to Solve the Kepler’s Equation

Given e and M0 at some initial time t0, if we know E then it is easy to compute M at
some time t, but the inverse procedure requires to solve a transcendental equation. This
can be done by means of iterative methods. Here, we will present two of them, but there
exist others, for instance by taking advantage of the Bessel’s functions.

Successive Substitutions

The first method we can consider is established on the assumption that we know a value
for the eccentric anomaly, say E0 corresponding to t = t0, close enough to the one we
aim at computing, say E at t.
The procedures consists in neglecting the term containing the trigonometric function
at the beginning and then to evaluate it at the eccentric anomaly E computed at the
previous iteration, that is,

E0 = M −M0

E1 = M −M0 + e sinE0

Ei+1 = M −M0 + e sinEi.

The longer we iterate the smaller the correction to be applied to E. We can stop when

|Ei+1 − Ei| < ϵ, (1.77)

where ϵ is a given tolerance. The convergence is usually reached after 30-40 iterations,
so not quickly.

Newton’s Method

In this case, we look at the problem as at the computation of the zeros of the function

f(E) = E − e sinE − (M −M0) , (1.78)

and we exploit the fact that this function can be derived with respect to E. In particular,
a Taylor series expansion of the first order gives

f(E) = f(E0) + f ′(E0)(E − E0) = 0, (1.79)

which can be generalized to the i−step as

f ′(Ei)(Ei+1−Ei) = −f(Ei) =⇒ Ei+1 = Ei−
f(Ei)

f ′(Ei)
= Ei−

Ei − e sinEi − (M −M0)

1− e cosEi
.

The procedure ends whenever a condition of the type (1.77) is met. With the Newton’s
method the convergence is usually much faster.
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1.8.4 Orbital Period and Mean Motion

The orbital period of an elliptic orbit can be derived by evaluating (1.74) at E = 2π,
namely,

T = 2π

√
a3

µ
, (1.80)

which is the same expression found for the circular case, Eq. (1.57). We notice that the
period does not depend on the eccentricity of the orbit, but just on the semi-major axis.
We call mean motion the mean angular velocity of the small body along the orbit,
namely,

n =
2π

T
=

√
µ

a3
, (1.81)

that can be used to write the Kepler’s equation (1.76) as

E − e sinE = n (t− τ0) . (1.82)

Also,

Ṁ = n =

√
µ

a3
=

√
µp

a3p
=
h

a

1
√
ap

=
h

a

1√
a2(1− e2)

=
h

ab
,

which is a constant. The mean anomaly is therefore the most regular of the anomalies
considered so far, though it does not have any geometrical meaning.

1.9 Hyperbolic Case

The eccentric anomaly in the hyperbolic case is

Ė =
h

r(−jb′)
= j

h

rb′
= jĖ′, (1.83)

where we have defined Ė′ as the real number such that

Ė′ =
h

rb′
. (1.84)

As a consequence, the parametric form for the coordinates with respect to the origin
becomes

x = a cosE = −a′ cos(jE′), y = b sinE = −jb′ sin(jE′). (1.85)

Since in general for a complex number α it holds

sinα =
ejα − e−jα

2j
, cosα =

ejα + e−jα

2
,

and for a real number β

sinhβ =
eβ − e−β

2
, coshβ =

eβ + e−β

2
,
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we have

x = −a′ e
−E′ − eE

′

2
= −a′ coshE′, y = −jb′ e

−E′ − eE
′

2j
= b′ sinhE′. (1.86)

Hence, the parametric form for the radius vector as a function of E′ is

r = a′(e coshE′ − 1). (1.87)

We notice that
x2

a′2
− y2

b′2
= cosh2E′ − sinh2E′ = 1,

as stated by (1.48).
Concerning the mean anomaly, we have

Ṁ =
h

ba
=

h

(−a′)(−jb′)
= −j h

a′b′
= −jṀ ′, (1.88)

where
Ṁ ′ =

h

a′b′
. (1.89)

The Kepler’s equation (1.76) is now

e sinhE′ − E′ =M ′ −M ′
0, (1.90)

while the relationship between true anomaly and the new defined eccentric anomaly
reads

tan
θ

2
=

√
e+ 1

e− 1
tanh

E′

2
. (1.91)

Finally, the analogous expressions of the radial and transversal components of the ve-
locity (1.67) are

vr =
na′e sinhE′

e coshE′ − 1
, vθ =

na′
√
e2 − 1

e coshE′ − 1
, (1.92)

where the mean motion n is given by definition as

n =

√
µ

a′3
, (1.93)

though it does not have a physical meaning.

1.10 From Position and Velocity to Orbital Elements

Let us assume to the position and velocity vector, say (r0,v0), of a satellite at time t0
orbiting around the Earth. In order to obtain the corresponding orbital elements the
steps to follow are:
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• compute the angular momentum

h = h0 = r0 × v0,

from which the inclination i of the orbit can be computed as

cos i =
hz
||h||

, (1.94)

and the longitude of the ascending node Ω as

tanΩ =

(
−hx
hy

)
. (1.95)

Indeed, from (1.8) and Fig. 1.12 we have
hx = yż − zẏ = h sin i sinΩ,
hy = zẋ− xż = −h sin i cosΩ,
hz = xẏ − yẋ = h cos i;

(1.96)

• compute the eccentricity vector

e = e0 = −r̂0 −
1

µ
h0 × v0,

whose modulus is the eccentricity e;

• the semi-major axis a can be derived from

p = a
(
1− e2

)
=
h2

µ
=⇒ a =

h2

µ (1− e2)
;

• once computed Ω, the direction of the line of nodes is given by

N =

cosΩ
sinΩ
0

 , (1.97)

and the argument of pericenter ω can be computed from

cosω = N · ê, sinω = ĥ · (N× ê) ; (1.98)

• if the time t0 corresponds to the time of pericenter, then we already have the sixth
parameter. Otherwise, we compute the true anomaly by means of

cos θ0 = ê · r̂0,

and consequently the eccentric anomaly by means of Eq. (1.66) and the time of
pericenter passage from Eq. (1.74). In other words, the sixth parameter to define
the orbit can be equivalently the time of pericenter passage, the true anomaly or
the eccentric anomaly.
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1.11 From Orbital Elements to Position and Velocity

Once solved for the orbital elements, to know the position and velocity vectors corre-
sponding to a time t ̸= t0 we have two options:

1. to vary the true anomaly θ;

2. to vary the time t.

In the first case,

• the corresponding eccentric anomaly is given by Eq. (1.66);

• the corresponding time by Eq. (1.74);

• the modulus of the corresponding radius vector by either (1.24) or (1.61);

• since we know θ, r̂ and θ̂ can be computed by means of (1.9);

• therefore both r(t) and v(t) are known from (1.13).

In the second case,

• the corresponding eccentric anomaly by solving iteratively the Kepler’s equation
(1.76);

• the corresponding true anomaly is found by means of Eq. (1.66);

• the final steps are the same as in the first case.

Clearly, the same procedure hold whenever we know sixth orbital elements and we aim
at computing the state vector at a given time t or true anomaly θ.
Moreover, following Sec. 1.7 to transform the coordinates given in the polar frame to the
pseudo-inertial reference system we need first to move to the Laplace reference system by
rotating around the axis defined by h of an angle θ and then perform the three rotations
corresponding to the angles (ω, i,Ω). The latter is the inverse transformation of the
one described in Sec. 1.7. In this way, the coordinates in the pseudo-inertial reference
systems are given by

x = r [cosΩ cos (ω + θ)− sinΩ sin (ω + θ) cos i] ,
y = r [sinΩ cos (ω + θ) + cosΩ sin (ω + θ) cos i] ,
z = r sin (ω + θ) sin i,

(1.99)

and
ẋ = − na√

1−e2
{[sin (ω + θ) + e sinω] cosΩ + [cos (ω + θ) + e cosω] sinΩ cos i} ,

ẏ = − na√
1−e2

{[sin (ω + θ) + e sinω] sinΩ− [cos (ω + θ) + e cosω] cosΩ cos i} ,
ż = na√

1−e2
[cos (ω + θ) + e cosω] sin i.

(1.100)
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As a final note, we remark that throughout the chapter, we have solved the Kepler’s
problem by looking for the associated first integrals. This is the so-called method of pa-
rameters, which allows to compute easily an analytical solution of the problem. However,
there also exists the possibility to integrate numerically the equation of motion (1.3) in
order to get the time evolution of position and velocity of the satellite very accurately.
This is called method of coordinates.

1.12 The Inverse Problem

So far we have faced the so-called direct problem: from the physical laws of dynamics
and gravitation we have solved for the motion of a small body in a gravitational field.
This is a deductive approach. However, from a historical point of view the procedure was
opposite: Johannes Kepler enunciated three laws to describe the motion of the planets
around the Sun, deriving these laws from the observations. Afterward, thanks to the ex-
periments carried out by Galileo Galilei, Isaac Newton provided a general understanding
of the problem of the mutual attraction of two bodies by means of the Universal Law of
Gravitation.
In this section, we deal with this inductive approach: from the Kepler’s Laws and the
Newtons’s Second Law of Motion we will deduce the Universal Law of Gravitation. This
is a very actual approach, in the sense that often both for space mission and more general
problems the desired motion (or effect) is known and the corresponding forces (or causes)
to this to occur have to be derived.
Our hypotheses are the Newtons’s Second Law of Motion F = ma and the three Kepler’s
Laws, namely,

1. Law of Ellipses: the planets move on ellipses, being the center of the Sun located
at one focus of the ellipse;

2. Law of Equal Areas: a line going from the center of the Sun to the planet sweeps
out equal areas in equal intervals of time (see Fig. 1.12);

3. Law of Harmonies: the ratio between the square of the period of revolution and
the cube of the semi-major axis of the ellipse is a constant.

We notice that the second law implies, in particular, that the speed at the pericenter is
the maximum one, the one at the apocenter the minimum one.
Let us translate the Kepler’s Laws in mathematical jargon:

1. the position of the planet with respect to the Sun is given by the polar equation
of the ellipse Eq. (1.24)

r =
p

1 + e cos θ
;

2. the area of the elliptic infinitesimal sector is

dA =
1

2
rrdθ, (1.101)
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Figure 1.12: The Law of Areas.

and thus the areolar velocity is

Ȧ =
1

2
r2θ̇ = constant. (1.102)

In the same way we obtained Eq. (1.16), we find

h = r2θ̇ = 2Ȧ, (1.103)

and thus
h = constant.

Indeed, the angular momentum vector is by definition

h = r× ṙ = r× (ṙr̂+w × r) ,

where w = θ̇k̂ is angular velocity of the polar reference system with respect to the
inertial one (see Fig. 1.2).

Using the properties of the triple cross product, we have

h = r× (w × r) = r2w −����:0
(r ·w)r = r2θ̇k̂.

3.
T 2

a3
= constant.
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Since the angular momentum vector is constant, the motion is planar and

d

dt
h =

d

dt
(r× ṙ) = ṙ× ṙ+ r+ r̈ = 0 =⇒ r× r̈ = 0.

For this cross product to be always null, the acceleration vector r̈ must be always parallel
to r, which means that we deal with a central field. We can write

r̈ = V r̂, (1.104)

where V is a scalar unknown function. Let us define now the eccentricity vector as the
vector of magnitude equal to the eccentricity of the ellipse and direction the one going
from the center of the Sun to the pericenter of the orbit. In this way Eq. (1.16) becomes

r =
p

1 + e · r̂
=⇒ p = r + e · r.

By taking the first and second derivative of p with respect to time, we obtain

0 = ṗ = ṙ + e · ṙ,
0 = p̈ = r̈ + e · r̈ = r̈ + V e · r̂. (1.105)

Since

ṙ =
d

dt
r =

pe sin θ

(1 + e cos θ)2
θ̇ =

pe sin θ

(1 + e cos θ)2
2
Ȧ

r2
= 2Ȧ

e sin θ

p
,

we have

r̈ =
d

dt
ṙ = 2Ȧ

e cos θ

p
θ̇ = 2Ȧ

e cos θ

p
2
Ȧ

r2
= 4Ȧ2 e cos θ (1 + e cos θ)2

p3
.

The area of the ellipse is given by A = πab and is swept in one orbital period, thus we
can write

Ȧ =
πab

T
, (1.106)

and

r̈ = 4
π2a2b2

T 2

e cos θ (1 + e cos θ)2

p3
= 4

π2a2a2(1− e2)

T 2

e cos θ (1 + e cos θ)2

a3(1− e2)3
=

= 4
π2a

T 2

e cos θ (1 + e cos θ)2

(1− e2)2
.

In this way, Eq. (1.105) reads

V e cos θ = −r̈ = −4
π2a

T 2

e cos θ (1 + e cos θ)2

(1− e2)2
,
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that is,

V = −4
π2a

T 2

(1 + e cos θ)2

(1− e2)2
= −4

π2a

T 2

a2(1− e2)2

r2(1− e2)2
=

= −4
π2a3

T 2r2
. (1.107)

If we define the constant µ as

µ = 4
π2a3

T 2
, (1.108)

and plug V into (1.104) we arrive to the Universal Law of Gravitation, namely

r̈ = − µ

r2
r̂. (1.109)

We notice that (1.108) represents the Kepler’s third law and can be also written as

µ = n2a3. (1.110)

1.13 The f and g series

The position vector r(t) at a given time t > t0 can be expressed as a Taylor expansion
in the neighborhood of t0 in this way:

r(t) = r(t0) + ṙ(t0)(t− t0) + r̈(t0)
(t− t0)

2

2!
+ · · · =

∞∑
n=0

(t− t0)
n

n!

dnr

dtn
|t=t0 . (1.111)

If the motion is Keplerian, then r(t0), ṙ(t0), r(t) and ṙ(t) lie on the same plane and thus
we can find two functions f(t) and g(t) such that

r(t) = f(t)r(t0) + g(t)ṙ(t0). (1.112)

Moreover, r(t), ṙ(t) represents a basis for every vector belonging to their plane and thus
also the n−derivative of r(t) can be written as a linear combination of r(t), ṙ(t), namely,

dnr(t)

dtn
= fn(t)r(t) + gn(t)ṙ(t), (1.113)

where fn, gn are two scalar functions depending on the time.
It can be demonstrated that fn, gn can be expressed as a function of three scalar quan-
tities, called Lagrange’s Fundamental Invariants:

ϵ :=
µ

r3
, λ :=

r · ṙ
r2

, ψ =
ṙ · ṙ
r2

,

having the dimension of [t]−2, [t]−1 and [t]−2, respectively.
They are said invariant because they do not depend on the reference system (they are
scalar quantities); fundamental because their derivatives can be expressed as a function
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of the invariants themselves and thus they form a closed set with respect to the operation
of derivation.

Example:
ϵ̇ = −3ϵλ, λ̇ = ψ − ϵ− 2λ2, ψ̇ = −2λ(ϵ+ ψ).

Let us notice that

d1r

dt1
= ṙ,

d2r

dt2
= − µ

r3
r = −ϵr,

d3r

dt3
= 3ϵλr− ϵṙ,

d4r

dt4
= (−15ϵλ2 + 3ϵψ − 2ϵ2)r+ 6ϵλṙ.

If we apply (1.113) to the first two expressions, we get

d1r

dt1
= f1r+ g1ṙ = ṙ,

d2r

dt2
= f2r+ g2ṙ = −ϵr.

that is,
f1 = 0, g1 = 1, f2 = −ϵ, g2 = 0.

In an analogous way, we have

f0 = 1, g0 = 0, f3 = 3ϵλ, g3 = −ϵ, f4 = −15ϵλ2+3ϵψ−2ϵ2, g4 = 6ϵλ.

This means that (1.113) is fulfilled for

fn(t) = fn(ϵ(t), λ(t), ψ(t)),

gn(t) = gn(ϵ(t), λ(t), ψ(t)).

and that
dnr

dtn
|t=t0 = fn(t0)r(t0) + gn(t0)ṙ(t0).

Hence, the Taylor series expansion (1.111) becomes

r(t) =

∞∑
n=0

(t− t0)
n

n!

dnr

dtn
|t=t0

=

∞∑
n=0

(t− t0)
n

n!
fn(t0)r(t0) +

∞∑
n=0

(t− t0)
n

n!
gn(t0)ṙ(t0)

= f(t)r(t0) + g(t)ṙ(t0),
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being f(t) and g(t) the so-called Lagrange coefficients:

f(t) =

∞∑
n=0

(t− t0)
n

n!
fn(t0),

(1.114)

g(t) =

∞∑
n=0

(t− t0)
n

n!
gn(t0).

In the same way, the velocity vector can be approximated as

ṙ(t) = ḟ(t)r(t0) + ġ(t)ṙ(t0). (1.115)

From a practical point of view, (1.112) and (1.115) can be used if t− t0 is small enough,
typically µ(t− t0)

2/r30 ≤ 0.01.

Notice that f, g, ḟ , ġ1 are not linear independent: if we know three of them, then we can
compute the other one. As a matter of fact,

r× ṙ = (fr0 + gṙ0)× (ḟr0 + ġṙ0)

= fḟ(r0 × r0) + fġ(r0 × r0) + gḟ(ṙ0 × r0) + gġ(ṙ0 × ṙ0)

= fġ(r0 × ṙ0)− gḟ(r0 × ṙ0),

that is,
fġ − gḟ = 1, (1.116)

because r0 × ṙ0 = r× ṙ = h.
Moreover, from

r× ṙ0 = fr0 × ṙ0 = fh,

r× r0 = −gr0 × ṙ0 = −gh,

it follows

f = 1− a

r0
[1− cos (E − E0)] , (1.117)

g = t− t0 −
1

n
[E − E0 − sin (E − E0)] , (1.118)

and

f = 1− r

p
[1− cos (θ − θ0)] , (1.119)

g =
rr0√
µp

sin (θ − θ0). (1.120)

1From now on we simplify the notation, omitting the dependence from t. The 0 subscript refers to
the dependence to t0.
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To prove, for instance, (1.119), let us recall Eq. (1.12), namely,

r = r cos θ̂i+ r sin θ̂j,
dr

dt
≡ ṙ = ṙ(cos θ̂i+ sin θ̂j) + rθ̇(− sin θ̂i+ cos θ̂j),

and Eq. (1.67), namely,

ṙ =

√
µ

p
e sin θ, rθ̇ =

√
µ

p
(1 + e cos θ) ,

which give

ṙ =

√
µ

p
e sin θ(cos θ̂i+ sin θ̂j) +

√
µ

p
(1 + e cos θ) (− sin θ̂i+ cos θ̂j)

=

[√
µ

p
e sin θ cos θ −

√
µ

p
(1 + e cos θ) sin θ

]
î+

[√
µ

p
e sin2 θ +

√
µ

p
(1 + e cos θ) cos θ

]
ĵ

= −
√
µ

p
sin θ̂i+

√
µ

p

[
e sin2 θ + cos θ + e cos2 θ

]
ĵ

= −
√
µ

p
sin θ̂i+

√
µ

p
(e+ cos θ) ĵ.

Therefore,

r× ṙ0 =

r cos θr sin θ
0

×


−
√

µ
p sin θ0√

µ
p (e+ cos θ0)

0

 =

 0
0

r cos θ
√

µ
p (e+ cos θ0) + r sin θ

√
µ
p sin θ0



=

 0
0

r
√

µ
p [e cos θ + cos θ cos θ0 + sin θ sin θ0]

 =

 0
0

r
√

µ
p [e cos θ + cos (θ − θ0)]

 ,

and thus

f =
r
√

µ
p [e cos θ + cos (θ − θ0)]

√
µp

=
r

p
[e cos θ + 1− 1 + cos (θ − θ0)]

= 1− r

p
[1− cos (θ − θ0)] .

1.14 Orbits at the Earth

To conclude the chapter we describe how the orbits for satellites around the Earth are
usually distinguished . According to their altitude, eccentricity and inclination, they can
serve to different purposes. Some of them are used especially to build constellations to
ensure a constant global coverage.
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1.14.1 Low Earth Orbits

Low Earth Orbits (LEO) are characterized by an altitude between about 200 km and
2000 km. They define a spherical region around the Earth, which is the most crowded
one, mainly because higher altitudes require more powerful launchers. Various values
of inclination with respect to the Earth equatorial plane are used, depending on the
aim of the mission but also on the latitude of the launch site. We will see that they
are strong affected by the perturbations due to the geopotential (see Sec. 3.1) and the
atmospheric drag (see Sec. 3.2), the latter being responsible of a rapid decay towards the
Earth. To mention some examples, the International Space Station (ISS) is orbiting on
an almost circular LEO at an average altitude of 400 km and inclination of 51.6◦. The
Hubble Space Telescope is orbiting on a nearly circular orbit at an average altitude of 570
km and inclination of 28.5◦. Earth observation satellites are also placed in LEO. They
provide high resolution data to monitor, for instance, oceans, climate and geological
features and for military and security services. Constellations of satellites in LEO are
commonly used for communication purposes, e.g. the Iridium system. Equatorial LEO
satellites are considered to observe equatorial regions, but have the drawback to be
subject to challenging thermal and radiation conditions, which strongly affect the design
of the payload. A special class of LEO is represented by the so-called sun-synchronous
orbits, which ensure a constant orientation with respect to the Sun and thus illumination
conditions. This property can be required, for instance, for the solar panels or to maintain
a well-defined ground lighting. In Sec. 3.1.4 we will see how they are designed. The
GOCE mission, whose aim was to measure the Earth’s gravity field and modeling the
geoid with an extremely high accuracy and spatial resolution, had a almost circular
sun-synchronous orbit, with inclination of about 96.7◦.

1.14.2 Geostationary Orbits

Geostationary Earth Orbits (GEO) are defined in such a way that the satellite appears
always at a given fixed position in the sky to a ground observer, that is, it does not move
relative to the Earth. To achieve this condition, it is required that its orbital period
equals the Earth’s rotation one and, as a consequence, GEO are characterized by zero
inclination, zero eccentricity and orbital altitude equal to 35786 km. The main drawback
in the choice of such orbits is that more energy must be spent both to reach this altitude
and to zero the inclination (none of the existing launch sites is fully equatorial).
The solar day is the interval of time occurring between two subsequent noons and it
consists of 24 hours. The rotation period of the Earth around its spin axis with respect
to an inertial reference system, the so-called sidereal day, is shorter than one solar day,
because in the time required to complete one rotation around its axis, the Earth has also
moved around the Sun.
Let us refer to Fig. 1.13. Since in one solar year, i.e., 365.25 solar days, the Earth
sweeps 360◦ along its orbit, then in one solar day it travels an angular distance equal to

α =
360◦

365.25
= 0.986◦. (1.121)
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Figure 1.13: The solar and the sidereal day (not in scale).

This is the angle that must balanced by a further rotation of the Earth to get to the
next noon. In other words,

Tsol
360◦ + α

=
Tsid
360◦

, (1.122)

where Tsol = 24 h and here 360◦ refers to the angle swept by the Earth in its rotation.
Therefore,

Tsid = 23 h 56′4′′ = 86164 s. (1.123)

A satellite having period equal to one sidereal day is called geosynchronous. From the
Kepler’s third law, we derive the semi-major axis corresponding to this period, namely,

TGEO ≡ Tsid = 2π

√
a3GEO

µ⊕ =⇒ aGEO = 42164 km. (1.124)

GEO are thus geosynchronous orbits, but they must be also circular. Otherwise, the
orbital velocity will be not constant, and this fact would make it moves in longitude with
respect to the ground station. The inclination must be zero to maintain the pointing in
latitude.
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These orbits are mainly used for telecommunication purposes, but also for weather
satellites when the concern is not to obtain high resolution data, but to analyze global
phenomena. Due to the high altitude, a GEO satellite can observe a large region on
Earth and, as a matter of fact, 3 GEO satellites displaced by 120◦ in mean anomaly are
enough to provide a global coverage (excluding the polar regions).
To transfer spacecraft from LEO to GEO they are usually employed the so-called Geo-
stationary Transfer Orbits (GTO), which are elliptical orbits characterized by a perigee
within the LEO region and an apogee near or above GEO. Their inclination is determined
by the latitude of the launch site.

1.14.3 Medium Earth Orbits

Medium Earth Orbits (MEO) generally include all the orbits lying in altitude between
LEO and GEO. The corresponding region around the Earth has gained interest recently
because of the Global Navigation Satellite Systems (GNSS), which are spacecraft constel-
lations able to provide autonomous geo-spatial positioning (and relative velocity), plus
accurate timing, with global coverage. At the moment the American NAVSTAR GPS
and the Russian GLONASS systems are operational, while the European Galileo system
and the Chinese Beidou (Compass) one are in the building phase. They are placed in
circular, inclined orbits (≈ 56◦ for all of them, except Glonass for which i ≈ 65◦) with an
altitude between approximately 19000 and 24000 km. They exploit 3 or 6 planes (only
for GPS), i.e., the satellites are equally displaced in Ω.
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2.1 Introduction

In the real world the orbits of the satellites, as well as the planetary ones, are not exactly
Keplerian conic sections. Indeed, the hypothesis of a perfectly symmetric gravitational
field, i.e. equivalent to the one due to a pointless mass, is never verified. Moreover, we
can never avoid the presence of other external forces affecting the motion of the body.
However, as we mentioned in the previous chapter, in many situations the Keplerian
solution can be considered a good initial solution for two main reasons:

• the Kepler’s problem is the only dynamical model that can be solved in closed
form;

• for Earth’s satellites, any other effect is some orders of magnitude lower than the
Earth’s monopole.

So far we have seen that, under the Keplerian assumptions, the equation of motion of a
massless particle is (1.3), namely,

d2r

dt2
= − µ

r2
r̂,

and that the corresponding motion can be described by means of 6 independent param-
eters which are constant in time.
In general, when there exist additional forces acting on the spacecraft, the equation of
motion can be written as

d2r

dt2
= − µ

r2
r̂+ f , (2.1)

where f includes all the dynamical contributions, which can be distinguished from the
gravitational attraction exerted by the pointless body of mass M . We notice that f is,
more properly, an acceleration and not a force. It is usually referred as a perturbation
and does not necessarily represent a problem to the mission designer. Indeed these
accelerations, and the deviations from the pure Keplerian motion they generate, can
help in the design of the trajectory.
In the perturbative case, the orbital elements are no longer constant, but vary with
time. Let us assume to know the orbital elements that at a given value of time t∗ define
the Keplerian orbit which, as a first approximation, describes the motion of the particle.
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This orbit is said osculating orbit at t∗, because at this epoch position and velocity on
it correspond to position and velocity on the true orbit. If we are able to compute the
function that at t∗ provides the future evolution of the osculating orbital elements, then
we can compute a new unique set of orbital elements, which define the new orbit at the
next epoch.
To solve the perturbed problem there exist various methods, which are usually divided
in two main classes:

• special perturbation methods, which integrate numerically a given problem with
given initial conditions and therefore aim at obtaining specific solutions holding
only in well-defined cases;

• general perturbation methods, aiming to provide approximate analytical solutions,
no matter on the initial conditions.

Moreover, as we will see in Chap. 3, the orbital perturbations can be classified in

• secular : the orbital element affected by the perturbation varies linearly with time
(or according to some power of time);

• long-period : the effects due to the perturbation repeat with a period which is at
least 1 order of magnitude larger than the orbital period;

• short-period : the effects due to the perturbation repeat after few or less orbital
periods.

2.2 Special Perturbation Theory

Our aim is to compute a solution for

d2r

dt2
= − µ

r2
r̂+ f , r(t0) = r0, v(t0) = v0. (2.2)

This is a Cauchy problem, which admits a unique solution.
Let us start with the special perturbation techniques, which include:

• the Cowell’s method : the equation of motion is integrated numerically without
any preliminary manipulation. The drawback is that the main gravitational term
is at least 103 times bigger than the perturbations and this, together with the
unavoidable errors due to the numerical approximation, makes the perturbative
effects almost disappear.

• The Encke’s method : it consists in integrating numerically only the perturbative
terms in the equation of motion and thus terms of the different order of magnitude
are treated separately. The whole motion is then built by superimpose all the
solutions. The reference conic section is updated once the deviation from the
Keplerian motion overcomes a given threshold.

• The Herrick’s method : the approach is the same as in the Encke’s method, but
now the Keplerian conic section is updated at each time step.
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2.2.1 Cowell’s Approach

The Cowell’s method consists in integrating numerically the whole equation of motion
(2.2), but turns out to be efficient only if the perturbative acceleration f has almost the
same order of magnitude as the inverse-square central gravitational one. Otherwise, it
requires relatively small integration steps, which may affect the computational time and
the growth of errors associated with roundoff. In any case, once chosen a given numerical
integration method, the differential system to be considered is

ẋ = vx,
ẏ = vy,
ż = vz,
v̇x = − µ

r3
x+ fx,

v̇y = − µ
r3
y + fy,

v̇z = − µ
r3
x+ fz,

(2.3)

where r =
√
x2 + y2 + z2 and the perturbative terms are usually given in some analytical

form (see Chap. 3 for some examples).

2.2.2 Encke’s Approach

With the Encke’s method, only the differential equation corresponding to the pertur-
bative term in (2.2) is integrated numerically. In this way, a given accuracy can be
obtained also with relatively large integration steps. The main idea is to start from a
reference solution at a given time, the osculating orbit, that would result in absence of
any perturbing accelerations. At the time chosen, the true solution and the osculating
one coincide. If the perturbations are some orders of magnitude lower than the central
gravitational acceleration, then over short intervals of time the actual position and ve-
locity will differ from the ones corresponding to the osculating orbit by a small amount.
Whenever the true orbit deviates from the osculating one, then a rectification is applied,
that is, a new initial time and corresponding reference solution are considered.
Let us assume to know the position and velocity on the orbit at time t∗ and associate
them to the osculating orbit at t∗, namely,

r(t∗) = rosc(t
∗), v(t∗) = vosc(t

∗).

At t = t∗ +∆t, we can write

r(t) = rosc(t) + δ(t), v(t) = vosc(t) + ν(t), (2.4)

where δ(t) and ν(t) are the ‘small’ differences in position and velocity between the actual
and the osculating orbits. In particular, δ(t) satisfies the differential equation

d2δ

dt2
=

d2r

dt2
− d2rosc

dt2
= − µ

r3
r+ f +

µ

r3osc
rosc = − µ

r3
r+ f +

µ

r3osc
(r− δ) ,

that is,
d2δ

dt2
+

µ

r3osc
δ =

µ

r3osc

(
1− r3osc

r3

)
r+ f , (2.5)
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with initial conditions

δ(t∗) = 0, δ̇(t∗) ≡ ν(t∗) = 0.

The main problem from a numerical point of view arises due to the term

1− r3osc
r3

,

which represents the difference of two almost equal numbers. One way to overcome this
is to define

q = 1− r2

r2osc
,

in such a way that
r3osc
r3

= (1− q)−
3
2 . (2.6)

Written in this way, we can apply the series expansion

1− r3osc
r3

= 1− (1− q)−
3
2 = 3q − 3 · 5

2!
q2 +

3 · 5 · 7
3!

q3 − .. = qf(q), (2.7)

where
f(q) = 3

(
1− 5

2
q +

5 · 7
3!

q2 − ..

)
.

Therefore, the equation to be integrated is

d2δ

dt2
=

µ

r3osc
[qf(q) (rosc + δ)− δ] + f . (2.8)

To summarize, from a practical point of view the procedure to follow is

1. compute a reference orbit, i.e. rosc(t
∗) and vosc(t

∗);

2. in the first step δ(t∗) = 0 and ν(t∗) = 0, that is, r(t∗) = rosc(t
∗), v(t∗) = vosc(t

∗)
and thus q(t∗) = 0;

3. integrate Eq. (2.8) up to t = t∗ +∆t starting from these initial conditions;

4. in this way you find δ(t∗ + ∆t) and δ̇(t∗ + ∆t) and thus r(t∗ + ∆t) = rosc(t
∗ +

∆t) + δ(t∗ +∆t) and v(t∗ +∆t) = vosc(t
∗ +∆t) + ν(t∗ +∆t), where rosc(t

∗ +∆t)
and vosc(t

∗ +∆t) are computed from the osculating orbital elements;

5. compute q(t∗ +∆t) and the corresponding f(q);

6. start over from step 3. now using as initial conditions the ones just computed and
t∗ = t∗ +∆t.

The Encke’s method allows large integration step, because the time variation of δ is
expected to be much slower than the one corresponding to r. This fact suggests one
possible criterion to decide when to apply the rectification of the orbit. This is, when
µ

r3osc
[qf(q) (rosc + δ)− δ] becomes much smaller than f . A different rule can be to change

the osculating orbit when δ
rosc

> 0.01 (Bate, Mueller & White, 1971). In both cases, any
growth in roundoff and truncation errors due to the numerical integration is bounded.
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2.3 General Perturbation Theory

General perturbation methods include:

• the method of the variation of parameters: the motion can be described using the
same 6 parameters, that are constant in the Keplerian case but evolve in time in
the perturbed one. This is an effective method for many reasons: the parameters
vary less rapidly than the Cartesian coordinates; their variation provide us with
an immediate insight on the gap between the Keplerian motion and the perturbed
one and finally the orbital parameters have a physical significance. There exist two
formulations associated with this methodology, the first leads to write the so-called
Gauss planetary equations, which relate the components of the perturbation f to
the variations in the orbital elements. This is also called the geometrical method
and will be faced in details in what follows. The second derivation consists in the
so-called Lagrange planetary equations and can be used only if the perturbation is
conservative.

• The method of the perturbation of the coordinates: the equation of motion is split
in two terms, one containing the Keplerian contribution, the other all the pertur-
bations. The latter is then integrated by means of a series expansion up to the
first meaningful orders.

2.3.1 Gauss Planetary Equations

Let us start by understanding if the angular momentum and eccentricity vectors, defined
by Eq. (1.8) and (1.20) respectively, are still constant. To this end, let us cross multiply
Eq. (2.2) by r, namely,

r× r̈ = − µ

r2
(r× r̂) + r× f . (2.9)

Since the first term can be written as

ṙ× ṙ+ r× r̈ =
d

dt
(r× ṙ) =

dh

dt
,

and r× r̂ = 0, we have

ḣ ≡ dh

dt
= r× f . (2.10)

The angular momentum vector varies in time, and, as a consequence, so the orbital plane
does. This implies, in particular, that the polar reference system {r̂, θ̂, ĥ} rotates with
respect to the inertial one with angular velocity w which is now not always directed
along h, i.e. w is not always perpendicular to the orbital plane.
In the polar reference system system, the velocity vector can be expressed as

ṙ = ṙr̂+w × r. (2.11)

By cross multiplication by r, we get

r× ṙ = ṙ����:0
(r× r̂) + r× (w × r) = r2w − (r ·w) r,
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where r · w is not null, because w is not normal to the orbital plane. In other words,
recalling Eq. (1.8),

h = r2w − (r ·w) r, (2.12)

or
w =

h

r2
+

r ·w
r2

r, (2.13)

that is,

w =
h

r2
+ γr̂, (2.14)

where we have defined
γ =

r ·w
r

≡ w · r̂ ≡ wr, (2.15)

which is an unknown. The vector w can thus be decomposed in a component along ĥ,
one along r̂ and none along θ̂.
Let us cross multiply Eq. (2.2) by h, namely,

h× r̈ = − µ

r2
(h× r̂) + h× f . (2.16)

The term on the left-hand side can be written as

h× r̈ =
d

dt
(h× ṙ)− ḣ× ṙ,

while the first term on the right-hand side as (since r̂× r̂ = 0)

− µ

r2
(h× r̂) = −µ

(
h

r2
+ γr̂

)
× r̂ = −µw × r̂ = −µ ˙̂r,

and thus Eq. (2.16) can be rewritten as

d

dt

(
1

µ
(h× ṙ) + r̂

)
=

1

µ

(
ḣ× ṙ

)
+

1

µ
(h× f) , (2.17)

that is, recalling Eq. (1.20),

de

dt
= − 1

µ

(
ḣ× ṙ

)
− 1

µ
(h× f) . (2.18)

We notice that since the orbital elements (a, e, i,Ω, ω) depend on the angular momentum
and eccentricity vectors, Eqs. (2.10) and (2.18) state the time evolution of the orbital
elements depends on the magnitude of the perturbation. This is another advantage of
the method of the variation of parameters. We also point out that h and e are not
constant, but they are still orthogonal, like in the Keplerian case. This means that also
now a sixth parameter is required to solve the time problem.
Let us consider the specific mechanical energy, namely,

E =
1

2
v2 − µ

r
= T +Π = − µ

2a
, (2.19)
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where we have specified the kinetic term T and the potential one Π.
The work-energy theorem states that the variation in kinetic energy is the work L done
by all the external forces acting on the particle, that is,

dT = dL, (2.20)

where the work done can be split in two terms, one accounting for the conservative forces
fc, the other for dissipative ones fd, in this way

dL = dLc + dLd. (2.21)

The work done by the conservative contributions is the opposite of the variation of
potential energy, that is,

dLc = −dΠ, (2.22)

while the one corresponding to dissipative forces is given by

dLd = fd · ds, (2.23)

where ds is a line element. So the total variation in kinetic energy can be expressed as

dT = −dΠ+ fd · ds, (2.24)

and the specific mechanical energy change as

dE = d(T +Π) = fd · ds. (2.25)

The corresponding variation in time is

Ė ≡ dE
dt

= f · v = f tdv, (2.26)

where f td is the tangential component of fd, that is, the one along the velocity vector.
Eq. (2.26) states that the energy of a perturbed orbit can vary only when there exists a
dissipative force acting along the tangential direction of the orbit. If the energy changes,
so the semi-major axis (and the orbital period) does, namely,

Ė =
d

dt

(
− µ

2a

)
=

µ

2a2
da

dt
= f tdv =⇒ da

dt
=

2a2

µ
f tdv. (2.27)

In other words, if only conservative forces are acting on the spacecraft or the dissipative
ones are not directed along the tangent to the orbit at the given point, then the semi-
major axis and the energy remain constant.
Let us derive now the Gauss planetary equations, which give the time variation of the
orbital parameters starting from the assumption that the perturbation f can be decom-
posed in the polar reference system {r̂, θ̂, ĥ}, namely,

f = f rr̂+ fθθ̂ + fhĥ. (2.28)

The equation we have just found for the semi-major axis (2.27) considered instead the
{t̂, n̂, ĥ} reference system (see Fig. 2.1), defined as
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Figure 2.1: The {t̂, n̂, ĥ} reference system. The out-of-plane direction is simply directed
along h and thus perpendicular to the orbital plane displayed.

• the first axis is along the tangential direction t̂ to the orbit at a given point P ;

• the second axis is the normal direction n̂ to t̂ in the orbital plane (positive towards
the interior of the ellipse);

• the out-of-plane axis is the normal direction ĥ to the orbital plane.

By introducing the angle δ as the angle between the transversal direction θ̂ and the
tangential one t̂ (see Fig. 2.1), Eq. (2.27) becomes

da

dt
=

2a2

µ
v
(
−f rd sin δ + fθd cos δ

)
. (2.29)

Since
sin δ = −1

v

µ

h
e sin θ, cos δ =

1

v

µ

h
(e cos θ + 1) , (2.30)

we have

da

dt
=

2a2

µ
v
µ

hv

[
f rde sin θ + fθd (1 + e cos θ)

]
=

2a2

h

[
f rde sin θ + fθd (1 + e cos θ)

]
. (2.31)
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We notice again that the out-of-plane component of the perturbation does not have any
effect on the semi-major axis.
Let us derive the equations relative to the other orbital parameter, by projecting Eq.
(2.10) onto the polar reference system {r̂, θ̂, ĥ}. We have

ḣ = ḣĥ+w × h = r× f ,

ḣĥ+

(
h

r2
+ γr̂

)
× h =

∣∣∣∣∣∣
r̂ θ̂ ĥ
r 0 0
f r fθ fh

∣∣∣∣∣∣ ,
ḣĥ− γhθ̂ = −rfhθ̂ + rfθĥ, (2.32)

that gives

ḣ = rfθ, γ =
rfh

h
. (2.33)

In this way, we have an explicit expression for γ, which depends on fh. This is the term
that makes the difference between w in the perturbative case and the Keplerian one. In
other words, w varies according to the time variation in i,Ω, which is responsible of the
time variation of the orbital plane.
If we recall the findings of Sec. 1.7, the vector w can decomposed in terms of the Euler
angles as

w = Ω̇K̂+ i̇N̂+
˙̃
θĥ, (2.34)

where θ̃ = ω+θ is the angle between the line of nodes and the radius vector r. We notice
that the {K̂, N̂, ĥ} reference system is not orthogonal. In polar components, we have

wr = γ = r̂ ·
(
Ω̇K̂+ i̇N̂+

˙̃
θĥ

)
, (2.35)

and since

r̂ · K̂ = sin θ̃ sin i,

r̂ · N̂ = cos θ̃,

it turns out that
γ = Ω̇ sin θ̃ sin i+ i̇ cos θ̃. (2.36)

Moreover,
wθ = 0 = θ̂ ·

(
Ω̇K̂+ i̇N̂+

˙̃
θĥ

)
, (2.37)

and since

θ̂ · K̂ = cos θ̃ sin i,

θ̂ · N̂ = cos
(π
2
+ θ̃

)
= − sin θ̃,

we get to
0 = Ω̇ cos θ̃ sin i− i̇ sin θ̃. (2.38)
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The last component reads

wh =
h

r2
= ĥ ·

(
Ω̇K̂+ i̇N̂+

˙̃
θĥ

)
, (2.39)

and using
ĥ · K̂ = cos i,

we obtain
h

r2
= Ω̇ cos i+

˙̃
θ. (2.40)

Let us multiply Eq. (2.36) by sin θ̃ and Eq. (2.38) by cos θ̃ and sum them up. Then, let
us make the difference between Eq. (2.36) multiplied by cos θ̃ and Eq. (2.38) by sin θ̃.
We obtain

Ω̇ sin i = γ sin θ̃, (2.41)
i̇ = γ cos θ̃, (2.42)
˙̃
θ =

h

r2
− Ω̇ cos i. (2.43)

Using (2.33), the first two become

Ω̇ sin i =
r

h
fh sin θ̃, (2.44)

i̇ =
r

h
fh cos θ̃, (2.45)

that is, the time variation on i,Ω depends only on the out-of-plane component of the
perturbation.
Let us consider now the time variation of the eccentricity vector, namely,

de

dt
= ėê+we × e, (2.46)

where
we = w − θ̇ĥ (2.47)

is the angular velocity of ê with respect to the inertial reference system. By means of
(2.14), we obtain

we =

(
h

r2
− θ̇

)
ĥ+ γr̂ =

(
h

r2
− ˙̃
θ +

˙̃
θ − θ̇

)
ĥ+ γr̂, (2.48)

and using (2.40),
we =

(
Ω̇ cos i+ ω̇

)
ĥ+ γr̂, (2.49)

where ω̇ is the time derivative of the argument of pericenter ω. In this way, (2.46)
becomes

de

dt
= ėê+

(
Ω̇ cos i+ ω̇

)
ĥ× e+ γr̂× e. (2.50)
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Figure 2.2: The unit vectors r̂, θ̂ with respect to the unit vectors ê, p̂.

Since (see Sec. 1.4)
ĥ× e = ep̂, r̂× e = −e sin θĥ, (2.51)

we get to
de

dt
= ėê+

(
Ω̇ cos i+ ω̇

)
p̂− γe sin θĥ. (2.52)

Let us cross multiply Eq. (2.10) with Eq. (1.35), which holds also in the perturbative
case,

ḣ× ṙ =
µ

h
(r× f)×

(
ep̂+ θ̂

)
= −µ

h

[
ep̂× (r× f) + θ̂ × (r× f)

]
= −µ

h

[
ep̂×

(
−rfhθ̂ + rfθĥ

)
+ θ̂ ×

(
−rfhθ̂ + rfθĥ

)]
= −µ

h

(
erfh sin θĥ+ erfθê+ rfθr̂

)
. (2.53)

Moreover,

− 1

µ
(h× f) = − 1

µ

(
−hfθr̂+ hf rθ̂

)
. (2.54)
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Therefore, Eq. (2.52) can be written as

ėê+
(
Ω̇ cos i+ ω̇

)
p̂− γe sin θĥ =

1

h

(
erfh sin θĥ+ erfθê+ rfθr̂

)
− µ

h

(
f rθ̂ − fθr̂

)
.

(2.55)
By considering that (see Fig. 2.2)

r̂ = cos θê+ sin θp̂, θ̂ = − sin θê+ cos θp̂, (2.56)

and equating components, we obtain

γe sin θ =
e

h
rfh sin θ, (2.57)

and

ė =
e

h
rfθ +

r

h
fθ cos θ +

h

µ
f r sin θ +

h

µ
fθ cos θ

=
r

h

[(
cos θ + e+

h2

µr
cos θ

)
fθ +

h2

µr
f r sin θ

]
. (2.58)

Since

r(t) =

h(t)
µ2

1 + e(t) cos θ
, (2.59)

Eq. (2.58) turns out to be

ė =
r

h
{[cos θ + e+ (1 + e cos θ) cos θ] fθ + (1 + e cos θ) f r sin θ}

=
r

h

[(
2 cos θ + e+ e cos2 θ

)
fθ + (1 + e cos θ) f r sin θ

]
. (2.60)

Along the p̂ direction we have instead

e
(
Ω̇ cos i+ ω̇

)
=

r

h
fθ sin θ − h

µ
f r cos θ +

h

µ
fθ sin θ

=
r

h

[(
sin θ +

h2

µr
sin θ

)
fθ − h2

µr
f r cos θ

]
=

r

h
{[sin θ + (1 + e cos θ) sin θ] fθ − (1 + e cos θ) f r cos θ}

=
r

h

[
sin θ (2 + e cos θ) fθ − cos θ (1 + e cos θ) f r

]
, (2.61)

which seems to tell us that the time variation in the argument of pericenter ω̇ is related to
Ω̇ and thus on fh. This cannot occur, because the orbital elements defining the shape of
the orbit, namely a, e, ω reasonably vary only due to the components of the perturbation
acting in the plane f r, fθ, while the orbital elements defining the orientation of the
orbital plane, i.e. i,Ω, vary due to the out-of-place component of f . Let us assume that
the perturbation is only along the out-of-plane direction. Then, the orbital plane will
change, in particular, the line of nodes will move. The argument of pericenter is defined



Orbital Perturbations 57

as the angle between this line and the eccentricity vector e, which is constant since we
are supposing f r = fθ = 0. The eΩ̇ cos i term in Eq. (2.61) does not refer thus to an
absolute displacement of the pericenter, but to a change in the reference system.
Let us summarize the Gauss Planetary Equations derived so far in a more compact form

ȧ =
2

n
√
1− e2

(
e sin θf r +

p

r
fθ

)
,

ė =

√
1− e2

na

[
sin θf r + (cos θ + cosE) fθ

]
,

i̇ =
r

na2
√
1− e2

cos (θ + ω)fh, (2.62)

Ω̇ =
r

na2
√
1− e2

sin (θ + ω)

sin i
fh,

ω̇ =

√
1− e2

nae

[
− cos θf r +

(
1 +

1

1 + e cos θ

)
sin θfθ − Ω̇ cos i

]
.

In the original formulation, instead of ȧ, we find

ṗ =
2p

h
rfθ. (2.63)

Concerning the time parameter, it can be proved that its variation is given by

Ṁ = n− 2r
√
µa
f r −

√
1− e2

(
ω̇ + Ω̇ cos i

)
, (2.64)

or, equivalently,

Ṁ = n+
1− e2

nae

[(
− 2e

1 + e cos θ
+ cos θ

)
f r −

(
1 +

1

1 + e cos θ

)
sin ifθ

]
, (2.65)

We notice that some of Eqs. (2.62) are not determined for i = 0 (Ω̇) and e = 0 (ω̇). This
is due in particular to the choice of the Euler angles and to the fact that the argument
of pericenter is no longer defined for circular orbits. As we mentioned in the previous
chapter, in those cases it is more convenient to adopt a different set of orbital elements.

2.3.2 Lagrange Planetary Equations

It is possible to prove that if the perturbation is conservative, that is, it can be written
as the gradient of a potential function, namely,

f =
∂R
∂r

, (2.66)
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where R is the so-called perturbing function, then we can apply the Lagrange planetary
equations to compute the corresponding variation in orbital elements. They are

ȧ =
2

na

∂R
∂M

,

ė =
1− e2

na2e

∂R
∂M

−
√
1− e2

na2e

∂R
∂ω

,

i̇ = − 1

na2
√
1− e2 sin i

(
∂R
∂Ω

− cos i
∂R
∂ω

)
,

Ω̇ =
1

na2
√
1− e2 sin i

∂R
∂i
, (2.67)

ω̇ =

√
1− e2

na2e

∂R
∂e

− cos i

na2
√
1− e2 sin i

∂R
∂i
,

Ṁ = n− 2

na

∂R
∂a

− 1− e2

na2e

∂R
∂e

.

We summarize the Gauss and Lagrange planetary equations in Tabs. 2.1-2.2.

f r fθ fh

∆a
√ √

∆e
√ √

∆i
√

∆Ω
√

∆ω
√ √ √

∆M
√ √ √

Table 2.1: The table shows when a given orbital element will change, depending on the
components of the perturbation f in the polar reference system {r̂, θ̂, ĥ}.

R(a) R(e) R(i) R(Ω) R(ω) R(M)

∆a
√

∆e
√ √

∆i
√ √

∆Ω
√

∆ω
√ √

∆M
√ √

Table 2.2: The table shows when a given orbital element will change, depending on the
perturbing function R.



Major Orbital Perturbations
on Earth Satellites 3

In this chapter we present the major orbital perturbations acting on satellites around the
Earth. Each contribution will be first modeled, and then the associated effect studied
by means of either the Gauss or the Lagrange planetary equations, depending whether
the perturbation is conservative or not. In particular, we will deal with:

• the fact that the Earth is not a perfect sphere with a radially symmetrical internal
distribution of mass;

• the atmospheric drag;

• the solar radiation pressure;

• the presence of other massive bodies, in particular Moon and Sun.

In Fig. 3.1 the order of magnitude of the corresponding (excluded drag) acceleration
is given as a function of the distance from the center of the Earth (Valk, Lemaître &
Anselmo, 2008). In a nutshell, the main perturbations acting on satellites in LEO are the
J2 term and the atmospheric drag; in MEO J2 and luni-solar perturbations; in GEO J22
and luni-solar perturbations. The solar radiation pressure must be taken into account in
MEO and GEO for high enough values of area-to-mass ratio. There exist other effects
that can play a role on the orbit of a spacecraft around the Earth, for instance, tidal
friction, albedo, relativistic effects, but their order of magnitude is less significant.
The effects due to a given orbital perturbation will be distinguished in

• secular, if they do not depend on the mean (or true) anomaly nor in the argument
of perigee;

• long-period, if they depend on the argument of perigee, but not on the mean
anomaly;

• short-period, if they depend on the mean anomaly.

For a conservative perturbation, the semi-major axis does not experience any secular or
long-period change.
Finally, we will also describe the station-keeping strategies, to be applied to play against
the long-period variations induced by J22, atmospheric drag and luni-solar perturbations.
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Figure 3.1: Order of magnitude of the major perturbing accelerations acting on satellites
around the Earth as a function of the distance to the Earth’s center (Valk, Lemaître &
Anselmo, 2008). The effect due to the atmospheric drag is not shown. The one corresponding
to the solar radiation pressure depends on the area-to-mass A/m ratio.

3.1 Earth Gravitational Potential

Let us consider a satellite subject to the gravitational potential of the Earth, and let r
be its geocentric radius vector. In an inertial reference system whose origin is located at
the center of mass of the Earth, the equation of motion of the satellite can be written as

d2r

dt2
=
∂U(r)
∂r

, (3.1)

where U(r) is the gravitational potential associated with the Earth. In Chap. 1, we
made the assumption that the central body, the Earth in this case, is a point mass, but
in real world situations this is never true. However, that hypothesis holds if the central
body is perfectly spherical and the total mass is distributed uniformly in its interior.
We recall that the gravitational potential U(r) must satisfy the Laplace’s equation in
any region exterior to the attracting mass, namely,

∇2U = 0. (3.2)
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Figure 3.2: Zonal harmonics of degree 2 (left) and 3 (right).

A function U(r) fulfilling the above equation is said harmonic function. By considering
the Earth as extended attracting body, the general solution of (3.2) can be expressed as

U(r) = µ

r

{
1 +

∞∑
l=2

l∑
m=0

Plm (sinϕ)
(r⊕
r

)l

[Clm cosmλ+ Slm sinmλ]

}
, (3.3)

where

• r⊕ the equatorial radius of the Earth (or any massive body);

• ϕ the geocentric latitude;

• λ the longitude;

• Plm (sinϕ) the associated Legendre polynomials of degree l and order m;

• Clm, Slm coefficients determined experimentally.

Moreover, µ corresponds to µ⊕, but the treatment of the problems is general. We notice
that in (3.3) µ/r is the fundamental harmonic or monopole which depends only on r and
corresponds to the potential exerted by a perfect sphere. Since in (3.3) we use spherical
coordinates we speak of spherical harmonics: they are periodic functions in the unit
sphere.
If the planet is characterized by axial symmetry, then also the gravitational field is
symmetric with respect to the polar axis and U(r) is independent from the longitude.
This is m = 0 and

U(r) = µ

r

{
1−

∞∑
l=2

Pl (sinϕ)
(r⊕
r

)l

Jl

}
, (3.4)
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where Pl (sinϕ) ≡ Pl0 (sinϕ) is said zonal harmonic and Jl = −Cl. In (3.3) or in (3.4)
J0 is the fundamental harmonic, while J1 is missing because we set the origin of the
reference system at the center of mass of the Earth.
These harmonics are called zonal because for any l there exist l latitude circles along
to Pl (sinϕ) = 0 and thus (l + 1) regions where the function is alternately positive, i.e.,
increasing, or negative, i.e., decreasing. For instance, for l = 2 we have

P2 (sinϕ) =
1

2

(
3 sin2 ϕ− 1

)
= 0 =⇒ ϕ ≈ ±35◦, (3.5)

and for l = 3

P3 (sinϕ) =
1

2
sinϕ

(
5 sin2 ϕ− 3

)
= 0 =⇒ ϕ = 0 or ϕ ≈ ±51◦. (3.6)

In Fig. 3.2 we show the corresponding regions on a planet. Concerning the Jl coefficients,
in Tab. 3.1 we give the first values in the case of the Earth.

Zonal Coefficient Approximated Value
J2 1.08× 10−3

J3 −2.53× 10−6

J4 −1.61× 10−6

J5 −2.27× 10−7

J6 5.40× 10−7

Table 3.1: Approximated values of the first zonal coefficients in the case of the Earth.

If m ̸= 0 and m = l, then we deal with the so-called sectorial harmonics, namely the
functions

Pll(sinϕ)
sin(lλ)
cos(lλ)

, (3.7)

which do not depend on the latitude. Indeed, since

Pll(sinϕ) =
(2l)!

2ll!
(cos2 ϕ)

l
2 ,

the only values of ϕ such that a sectorial harmonic vanishes correspond to the poles, that
is, when ϕ = ±π/2. On the other hand, sin(lλ) and cos(lλ) cancel out for 2l different
values of λ, that is along 2l meridians and the sphere is split in 2l orange slices, see Fig.
3.3 on the left.
Otherwise, if m ̸= 0 and m ̸= l we have the tesseral harmonics, that is, the functions

Plm(sinϕ)
sin(mλ)
cos(mλ)

. (3.8)

In this case we have (l − m) values of longitude along each meridian such that the
harmonic is zero and 2m values of latitude along each parallel and therefore the sphere
is split in 2m(l −m+ 1) tiles, see Fig. 3.3 on the right.
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Figure 3.3: Sectorial harmonics of degree and order 7 (left) and tesseral harmonics of degree
9 and order 6 (right).

In what follows, we analyze the consequences on the orbit of a satellite around the Earth
due to terms associated with J2, J3 and J22. To this end, we remark that an expression
for the gravitational potential U(r), equivalent to (3.3), is

U(r) = µ

r

{
1−

∞∑
l=2

JlPl (sinϕ)
(r⊕
r

)l

+

∞∑
l=2

l∑
m=1

JlmPlm (sinϕ)
(r⊕
r

)l

cos (mλ−mλlm)

}
,

(3.9)
where Jlm =

√
S2
lm + C2

lm and

λlm =
1

m
tan−1

(
Slm
Clm

)
(3.10)

are the equilibrium longitudes for Jlm, whose meaning will be specified later.
Finally, we notice that the perturbation due to the mass distribution of the Earth is
conservative: it depends only on position, not on velocity and it can be described by
means of a potential function.

3.1.1 Effects due to J2

The term of the potential associated with J2 is responsible of the oblateness of the Earth.
In particular, it is known that the equatorial diameter of the Earth is longer than the
polar diameter of about 20 km. We see here the secular effects on the orbital elements
due to that.
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Figure 3.4: The relationship between geocentric latitude and the angular orbital elements of
the orbit.

By considering only the term of degree 2, Eq. (3.4) reads

U(r) =
µ

r

[
1− P2 (sinϕ)

(r⊕
r

)2

J2

]
=

µ

r

[
1− 1

2

(
3 sin2 ϕ− 1

) (r⊕
r

)2

J2

]
, (3.11)

that is, the perturbing function due to J2 is

R = −µ
2
J2r

2⊕ (1 + e cos θ)3

p3
(
3 sin2 i sin2(ω + θ)− 1

)
. (3.12)

Indeed, if we refer to Fig. 3.4 and apply the rules of spherical trigonometry we get

sinϕ

sin i
=

sin (ω + θ)

sin (π/2)
. (3.13)

Since R is a periodic function in θ of period 2π, it can be expanded as a Fourier series

R = R̄+
∞∑
n=1

an cosnθ + bn sinnθ, (3.14)

where R̄ is the mean value of the perturbing function over one orbit, namely,

R̄ =
1

2π

∫ 2π

0
RdM. (3.15)
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From the definition of mean anomaly, recall Eq. (1.75), we have

dM = ndt,

and from the angular momentum Eq. (1.16)

dt =
r2

h
dθ.

This is,

dM = n
r2

h
dθ, (3.16)

and thus, using also Eqs. (1.23) and (1.81),

R̄ =
1

2π

∫ 2π

0
Rnr

2

h
dθ

= −
µr2⊕
4π

J2

∫ 2π

0

(1 + e cos θ)3

p3
[
3 sin2 i sin2(ω + θ)− 1

]
n
r2

h
dθ

= −
µr2⊕
4π

J2

∫ 2π

0

1 + e cos θ

p

[
3 sin2 i sin2(ω + θ)− 1

]√ µ

a3
1

√
pµ
dθ

= −
J2r

2⊕
4π

µ

a3(1− e2)3/2

∫ 2π

0
(1 + e cos θ)

[
3 sin2 i sin2(ω + θ)− 1

]
dθ. (3.17)

By solving the integral, we get to

R̄ =
J2r

2⊕
4

µ

a3(1− e2)3/2
(
2− 3 sin2 i

)
. (3.18)

Indeed,∫ 2π

0
(1 + e cos θ)

[
3 sin2 i sin2(ω + θ)− 1

]
dθ =

∫ 2π

0

[
3 sin2 i sin2(ω + θ)− 1

]
dθ +∫ 2π

0
e cos θ

[
3 sin2 i sin2(ω + θ)− 1

]
dθ,

with∫ 2π

0

[
3 sin2 i sin2(ω + θ)− 1

]
dθ = 3 sin2 i

1

2
[ω + θ − sin (ω + θ) cos (ω + θ)] |2π0 − 2π

= 3 sin2 i
1

2
[ω + 2π − ω − sinω cosω + sinω sinω]− 2π

= 3π sin2 i− 2π,

and∫ 2π

0
e cos θ

[
3 sin2 i sin2(ω + θ)− 1

]
dθ =

���������������:0[
3e sin2 i sin θ sin2 (ω + θ)

]
|2π0 −

���������������������:0∫ 2π

0
3e sin2 i2 sin (ω + θ) cos (ω + θ) sin θdθ.
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We notice that (3.18) depends only the orbital elements a, e, i and thus represents the
secular perturbation due to J2. Also, the Lagrange planetary equations (2.67) applied
to R̄ provide

da

dt
=
de

dt
=
di

dt
= 0, (3.19)

while for the longitude of the ascending node Ω the variation in time is

dΩ

dt
=

1

na2
√
1− e2 sin i

∂R̄
∂i

= − 1

na2
√
1− e2 sin i

J2r
2⊕

4

µ

a3(1− e2)3/2
6 sin i cos i

= −3

2

J2r
2⊕n

p2
cos i, (3.20)

for the argument of perigee ω it is

dω

dt
=

√
1− e2

na2e

∂R̄
∂e

− cos i

na2
√
1− e2 sin i

∂R̄
∂i

=

√
1− e2

na2e

J2r
2⊕

4

µ

a3
(
2− 3 sin2 i

) 3e

(1− e2)5/2
+

cos i

na2
√
1− e2 sin i

J2r
2⊕

4

µ

a3(1− e2)3/2
6 sin i cos i

=
J2r

2⊕n

4a2(1− e2)2
(
6 + 9 cos2 i− 9 + 6 cos2 i

)
=

J2r
2⊕n

4p2
(
−3 + 15 cos2 i

)
=

3

4

J2r
2⊕n

p2
(
5 cos2 i− 1

)
, (3.21)

and for the mean anomaly M it is

dM

dt
= n− 2

na

∂R̄
∂a

− 1− e2

na2e

∂R̄
∂e

= n+
2

na
3
J2r

2⊕
4

µ

a4(1− e2)3/2
− 1− e2

na2e

J2r
2⊕

4

µ

a3
(
2− 3 sin2 i

) 3e

(1− e2)5/2

= n+
3n

a2

J2r
2⊕

2(1− e2)2
(1− e2)1/2 − n(1− e2)1/2

a2

J2r
2⊕

4

(
2− 3 sin2 i

) 3

(1− e2)2

= n+
3

2

J2r
2⊕n

p2

(
1− 3

2
sin2 i

)√
1− e2. (3.22)

We notice that if i ∈ (0, 90◦), then Ω̇ < 0. This is, for prograde orbits the line of
nodes regresses (see Fig. 3.5), for retrograde orbits it precesses. We recall that for an
observer looking to the North pole from above the prograde motion is counterclockwise,
the retrograde one instead is clockwise.
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Figure 3.5: Due to J2 the longitude of ascending node of prograde orbits moves westward.
The orbital plane tends to turn toward the equator and the angular momentum vector rotates
about the polar axis because of that.

On the other hand, the line of apsides does not move because of the perturbation due
to J2 if

5 cos2 i− 1 = 0,

that is, for the critical values of inclination

i1 ≈ 63.43◦, i2 ≈ 116.57◦,

whose values hold for any orbit and massive body, i.e., not only for the Earth, that is,
they are independent from the other orbital elements and the value of J2. If i < i1 then
the line of apsides advances; if i > i1 it regresses.

3.1.2 Effects due to J3

The spherical harmonic corresponding to J3 is responsible of the ‘pear-shape’ of the
Earth and it provides a long-term periodic perturbation on the orbit of the satellite.
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The perturbing function associated with the long-period effects due to J3 is

R =
3

2
µJ3

r3⊕
a4

e

(1− e2)
5
2

sin i

(
1− 5

4
sin2 i

)
sinω, (3.23)

which does not depend on the true anomaly. The just written expression is derived from
Eq. (3.3), using the identity

sin3 (θ + ω) =
3

4
sin (θ + ω)− 1

4
sin (3θ + 3ω),

and taking the mean value with respect to the mean anomaly (Roy, 2005). The perturb-
ing function (3.23) depends on the argument of perigee ω and thus now ė ̸= 0 and i̇ ̸= 0.
In particular, we have

∂R
∂ω

=
3

2
µJ3

r3⊕
a4

e

(1− e2)
5
2

sin i

(
1− 5

4
sin2 i

)
cosω, (3.24)

and therefore, by applying the Lagrange planetary equations, the variation in eccentricity
due to J3 is

de

dt
= −3

2

√
1− e2

na2e
µJ3

r3⊕
a4

e

(1− e2)
5
2

sin i

(
1− 5

4
sin2 i

)
cosω

= −3

2
nJ3

r3⊕
a3(1− e2)2

sin i

(
1− 5

4
sin2 i

)
cosω, (3.25)

and the one in inclination is

di

dt
=

3

2

cos i

na2
√
1− e2 sin i

µJ3
r3⊕
a4

e

(1− e2)
5
2

sin i

(
1− 5

4
sin2 i

)
cosω

=
3

2
eJ3

r3⊕
a3(1− e2)3

cos i cosω

(
1− 5

4
sin2 i

)
. (3.26)

In order to get the long-term period effect, we integrate the above expressions with
respect to ω, namely,

∆i =

∫ ω∗

0

di

dω
dω =

∫ 2π

0

di

dt

dt

dω
dω =

=

∫ ω∗

0

[
3

2
eJ3

r3⊕
a3(1− e2)3

cos i cosω

(
1− 5

4
sin2 i

)][
3
J2r

2⊕n

p2

(
1− 5

4
sin2 i

)]−1

dω

=

∫ ω∗

0

1

2

J3
J2

r⊕
a

e

1− e2
cos i cosωdω

=
1

2

J3
J2

r⊕
a

e

1− e2
cos i sinω∗. (3.27)
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In an analogous way, for the eccentricity we find

∆e = −1

2

J3
J2

r⊕
a

e

1− e2
sin i sinω∗. (3.28)

We notice that in (3.27) we exploit the fact that the argument of perigee varies because
of J2, according to Eq. (3.21). This is justified by the order of magnitude of J2 which is
about 2.5 times larger than the one associated with J3 (see Tab. 3.1).
Moreover, Eqs. (3.20) and (3.27) tell us that for polar orbits secular and long-period
effects in Ω and i do not take place. For equatorial orbits instead the eccentricity is
constant.

3.1.3 Effects due to J22

The term J22 =
√
C2
22 + S2

22 ≈ 1.8× 10−6 is associated with the fact that the equatorial
section of the Earth is not a circle, but an ellipse. We consider the consequences of that
on a geostationary orbit (see Sec. 1.14.2), for which the effect is more pronounced. We
recall that such orbit is characterized by

• the orbital period is equal to the period of rotation of the Earth around its spin
axis;

• the orbit is circular, i.e., e = 0;

• the orbit lies on the equatorial plane, i.e., i = 0.

It follows that r = a = 42164 km and v =
√
µ/r ≈ 3.075 km/s. From the point of

view of an observer on the Earth’s surface, a geostationary satellite appears fixed in
the sky, that is, the ground track is a point on the equator with latitude ϕ = 0 and
given longitude λ. The effect due to the ellipticity of the Earth’s equator is to make the
satellite moving with respect to this fixed position, as seen from the Earth.
Let us consider a reference system which rotates together with the Earth, see Fig. 3.6.
If the equatorial section was circular, in any point of the orbit there would exist only a
central component of acceleration, say ar. Since it is elliptic, there also exists a transver-
sal component, say at, directed towards the major axis of the ellipse corresponding to
the equatorial section. On the points labelled as 1, 2, 3, 4 in Fig. 3.6 at = 0: these are
equilibrium points; 2, 4 are in particular unstable, while 1, 3 stable. Though the ellip-
ticity tends to move the satellite toward the major axis of the Earth’s equator, what
happens is that the satellite moves toward the minor axis. We have thus a longitudinal
drift, which depends on the position of the satellite with respect to the stable equilibrium
points.
In order to explain this paradox, let us recall Eq. (1.81), namely,

µ = n2a3,

and derive it with respect to time, that is,

0 = 2n
dn

dt
a3 + 3a2n2

da

dt
=⇒ dn

dt
= −3

2

n

a

da

dt
. (3.29)
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Figure 3.6: The acceleration due to the ellipticity of the Earth’s equator on a geostationary
orbit. The points labeled as U are the unstable equilibrium points, the ones labeled as S the
stable ones.

Also, from Eq. (1.37), namely,
E = − µ

2a
,

we get to
dE
dt

=
µ

2a2
da

dt
. (3.30)

Since it also holds (see Eq. (2.26)) that

dE
dt

= a · v, (3.31)

where v is the velocity on the orbit and a = (ar, at) is the acceleration due to J22, we
have

da

dt
=

2a2

µ
a · v. (3.32)

This tells us that
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• if a ·v > 0, that is, the two vectors form an angle γ < 90◦, then ȧ > 0, the satellite
moves on a higher orbit and the mean motion decreases ṅ < 0, i.e., the orbital
period increases. The satellite slows down and goes toward West.

• If a · v < 0, that is, γ > 90◦, then ȧ < 0 and ṅ > 0. The satellite speeds up and
moves toward East, like if it preceded the Earth.

Let us see specifically how the longitude corresponding to the satellite ground track
behaves. The perturbing function due to J22 is

R =
µ

r
J22

(r⊕
r

)2

P22(sinϕ) cos (2λ− 2λ22), (3.33)

where λ22 is the longitude corresponding to the equilibrium positions mentioned above,
that is,

λ22 =
1

2
tan−1

(
S22
C22

)
=


75.09◦ East: stable (point 3 in Fig. 3.6)
165.09◦ East: unstable (point 2 in Fig. 3.6)
104.91◦ West: stable (point 1 in Fig. 3.6)
14.91◦ West: unstable (point 4 in Fig. 3.6)

(3.34)

Since e = 0 and i = 0, the Lagrange planetary equations applied to the semi-major axis
read

da

dt
=

2

na

∂R
∂M

=
2

na

∂R
∂λ

, (3.35)

or, equivalently,

d2λ

dt2
=

dn

dt
= −3

2

n

a

da

dt
= −3

2

n

a

2

na

∂R
∂λ

=
3

a2
µ

r
J22

(r⊕
r

)2

P22(sinϕ)2 sin (2λ− 2λ22). (3.36)

The Legendre polynomial P22(sinϕ) for ϕ = 0 is equal to

P22(sinϕ) = 3(1− sin2 ϕ) = 3, (3.37)

and this is a further confirmation that the effect is more relevant for equatorial orbits.
Geostationary orbits have in addition the property to be in resonance with the Earth’s
rotation period.
Because of (3.37), Eq. (3.36) becomes

d2λ

dt2
= 18J22

(r⊕
r

)2

n2 sin (2λ− 2λ22), (3.38)

which means that the satellite oscillates around the equilibrium positions associated
with λ22. This is indeed the equation of the pendulum, for which we can depict a phase
portrait like in Fig. 3.7. Let us multiply Eq. (3.38) by λ̇, namely,

λ̇λ̈− 18λ̇J22

(r⊕
r

)2

n2 sin (2λ− 2λ22) = 0,
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Figure 3.7: Phase portrait corresponding to the drift in longitude λ for geostationary orbits
due to J22. The red points are the equilibrium positions λ22, the motion is clockwise.

that is,
d

dt

(
1

2
λ̇2

)
+

18

2
J22

(r⊕
r

)2

n2
d cos (2λ− 2λ22)

dt
= 0.

By integration in time, we obtain

λ̇2 + 18J22

(r⊕
r

)2

n2 cos (2λ− 2λ22) = λ̇2 + 18J22

(r⊕
r

)2

n2
[
1− 2 sin2 (λ− λ22)

]
= constant,

that is,

λ̇2 − 36J22

(r⊕
r

)2

n2 sin2 (λ− λ22) = constant. (3.39)

As a function of the value of this constant, which depends on the initial conditions
considered, we find a librational or a rotational motion.

3.1.4 Applications: Sun-Synchronous Orbits and Molniya Orbits

A sun-synchronous orbit is an orbit such that it passes above the same point on the
Earth at the same local solar hour. This always ensures equal lighting conditions and it
is useful especially for meteorological and atmospheric studies and remote sensing. The
orbital plane maintains a fixed orientation with respect to the Sun–Earth direction all
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over the year. In order to satisfy this constraint, the secular variation of Ω must be equal
to the mean velocity of the Sun in its apparent motion at the Earth (see Sec. 1.14.2),
namely,

dΩ

dt
=

360◦

365.25
≈ 0.986◦

day
, (3.40)

which is a positive quantity and thus the sun-synchronous orbit must be retrograde,
the line of nodes moves toward East and chases the Sun. Typically sun-synchronous
orbits are quasi-circular with i ≈ 98.6◦ and an altitude of about 800 km. We notice that
Eq. (3.20) implies that, assuming e = 0, the inclination is determined by the altitude
required.
A Molniya orbit is a semi-synchronous orbit, i.e., with an orbital period of 12 hours,
with high eccentricity e = 0.73, critical inclination i = i1 and semi-major axis a = 26562
km. Because of the critical inclination, the argument of perigee ω remains constant,
typically ω = 270◦ and the satellite spends most of the time at the apogee, where it can
be observed from the ground stations on the North hemisphere. As a matter of fact, if
ω = 270◦ then at the apogee the sub-satellite point corresponds to a latitude equal to
i1 North. These orbits are named after Russian communication satellites, which indeed
were supposed to be observed from Russia.
Other orbits which take advantage of the critical values of inclination are the Tundra
orbits, characterized by an orbital period of 24 hours.

3.2 Atmospheric Drag

Now let us consider the consequences due to the atmospheric drag. This is a non-
conservative perturbation, directed mostly on the opposite direction of the velocity of the
satellite computed with respect to the atmospheric flow. If there also exists a component
perpendicular to such velocity, then we speak of atmospheric lift. The atmospheric drag
has significant effects up to an altitude of about 800–1000 km, because the Earth’s
atmospheric density decreases exponentially with the altitude. For an elliptic orbit, it
must be taken into account at the perigee. The two main difficulties in analyzing this kind
of perturbation arise because it is a challenging task to obtain an accurate modeling of
the shape of the satellite and its orientation with respect to the surrounding atmosphere
and also an accurate modeling of the atmospheric density, which varies as a function of
altitude and time.

3.2.1 Modeling

The force due to the interaction between the satellite and the atmosphere is usually
decomposed in two directions, the first along the relative velocity satellite-atmosphere,
say v̂a, the other perpendicular to v̂a, say v̂a⊥ . Let us assume that the atmosphere
rotates together with the Earth with an angular velocity w⊕ = 4.178 × 10−3 deg/s.
Then

va = v −w⊕ × r, (3.41)
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where w⊕ = w⊕k̂, and r,v are the radius and velocity vector of the satellite in its orbit
around the Earth. For satellites on orbits low enough to consider not negligible the effect
of the atmosphere, we have

||v|| >> ||w⊕ × r|| =⇒ va ≈ v,

and the perturbing force can be written as

F = −Dv̂ + Lv̂⊥, (3.42)

where D is the drag and L is the lift.
Let us neglect the term due to the lift and write the drag as

D =
1

2
ρAv2CD, (3.43)

where ρ is the atmospheric density, A is the area of the satellite along the direction
of motion, v the modulus of the orbital velocity and CD the drag coefficient, typically
between 1.5 and 3. The perturbing acceleration, as the one considered in Chap. 2, is
thus a negative tangential force per unit of mass, namely,

f =
F

m
= −1

2
ρ
A

m
v2CDv̂, (3.44)

and the greatest consequences are found for high area-to-mass ratios A/m. Since f is
directed along v̂, it does not have out-of-plane components, that is, in the {r̂, θ̂, ĥ}
reference system it can be decomposed as

f = f rr̂+ fθθ̂ +�
��fhĥ.

3.2.2 Effects

By applying the Gauss planetary equations (2.62) to the atmospheric perturbation, it
turns out that

di

dt
=
dΩ

dt
= 0. (3.45)

In order to find the variation in time on the other orbital elements, let us recall Eq.
(1.15), namely,

v =
√
v2r + v2θ =

√
(ṙ)2 + (rθ̇)2,

and Eq. (1.67), namely,

vr =

√
µ

a(1− e2)
e sin θ, vθ =

√
µ

a(1− e2)
(1 + e cos θ) ,

from which it follows

v =

√
µ

a(1− e2)

√
e2 + 1 + 2e cos θ =

rθ̇

1 + e cos θ

√
e2 + 1 + 2e cos θ. (3.46)
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Figure 3.8: The flight path angle δ.

Moreover, the flight path angle δ introduced in Sec. 2.3.1 between the tangential and
the transversal direction (see Fig. 3.8), is such that

sin δ =
ṙ

v
=

e sin θ√
e2 + 1 + 2e cos θ

, cos δ =
rθ̇

v
=

1 + e cos θ√
e2 + 1 + 2e cos θ

. (3.47)

In this way the components of the perturbation can be written as

f r = −D
m

sin δ, fθ = −D
m

cos δ, (3.48)

and by applying the Gauss planetary equations (2.62) we get the variation in time of the
semi-major axis as

da

dt
=

2

n
√
1− e2

(
e sin θf r +

p

r
fθ

)
= − 2D

mn
√
1− e2

(
e2 sin2 θ + (1 + e cos θ)2√

e2 + 1 + 2e cos θ

)
= − 2D

mn
√
1− e2

√
e2 + 1 + 2e cos θ. (3.49)

The eccentricity variation is instead, using also Eq. (1.63),

de

dt
=

√
1− e2

na

[
sin θf r + (cos θ + cosE) fθ

]
= − D

m
√
1 + e2 + 2e cos θ

√
1− e2

na

[
e sin2 θ + (1 + e cos θ)

(
cos θ +

e+ cos θ

1 + e cos θ

)]
= − D

m
√
1 + e2 + 2e cos θ

√
1− e2

na

(
e sin2 θ + cos θ + e cos2 θ + e+ cos θ

)
= − D

m
√
1 + e2 + 2e cos θ

√
1− e2

na
(2e+ 2 cos θ) , (3.50)
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while the one in the argument of perigee is

dω

dt
=

√
1− e2

nae

[
− cos θf r +

(
1 +

1

1 + e cos θ

)
sin θfθ

]
= − D

m
√
1 + e2 + 2e cos θ

√
1− e2

nae

[
−e cos θ sin θ +

(
1 +

1

1 + e cos θ

)
sin θ (1 + e cos θ)

]
= − 2D sin θ

m
√
1 + e2 + 2e cos θ

√
1− e2

nae
. (3.51)

The phenomenon taking place due to the atmospheric drag is a circularization of the
orbit: when almost zero eccentricity is reached, the trajectory resembles a spiral, which
oscillates a little in eccentricity.
In order to compute the corresponding variations over one orbital period and the secular
effects, we have to integrate

∆a =

∫ 2π

0

da

dE
dE =

∫ 2π

0

da

dt

dt

dθ

dθ

dE
dE,

∆e =

∫ 2π

0

de

dE
dE =

∫ 2π

0

de

dt

dt

dθ

dθ

dE
dE, (3.52)

∆ω =

∫ 2π

0

dω

dE
dE =

∫ 2π

0

dω

dt

dt

dθ

dθ

dE
dE.

Because of (1.16) and (1.23), we have

dt

dθ
=

(
dθ

dt

)−1

=
r2

h
=

r2

na
3
2 r1/2(1 + e cos θ)1/2

=
a2(1− e2)2

na
3
2a

1
2 (1− e2)

1
2 (1 + e cos θ)2

=
(1− e2)

3
2

n(1 + e cos θ)2
. (3.53)

Therefore,

da

dθ
= − 2D

mn
√
1− e2

√
e2 + 1 + 2e cos θ

(1− e2)
3
2

n(1 + e cos θ)2

= −ρA
m
v2CD

(1− e2)

n2(1 + e cos θ)2

√
e2 + 1 + 2e cos θ

= −ρA
m
CD

µ

n2a(1− e2)
(e2 + 1 + 2e cos θ)

(1− e2)

(1 + e cos θ)2

√
e2 + 1 + 2e cos θ

= −ρA
m
CDa

2 (e
2 + 1 + 2e cos θ)

3
2

(1 + e cos θ)2
. (3.54)

In an analogous way, it can be proven that

de

dθ
= −A

m
ρCDa(1− e2)

(e2 + 1 + 2e cos θ)
1
2

(1 + e cos θ)2
(e+ cos θ), (3.55)
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Figure 3.9: The integrand function to obtain the secular effect in semi-major axis due to the
atmospheric drag.

and

dω

dθ
= −A

m
ρCDa

1− e2

e

(e2 + 1 + 2e cos θ)
1
2

(1 + e cos θ)2
sin θ. (3.56)

Eq. (3.56) contains a sin θ term and thus the integral over one orbit will be zero. This
means that the atmospheric drag does not give rise to secular effects in ω, but only
periodic ones.
From Eq. (1.63) it can be proven that

dθ

dE
=

√
1− e2

1− e cosE
, (3.57)

and also

cos θ =
cosE − e

1− e cosE
. (3.58)
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in such a way that we obtain

da

dt

dt

dθ

dθ

dE
= −ρA

m
CDa

2 (e
2 + 1 + 2e cos θ)

3
2

(1 + e cos θ)2

√
1− e2

1− e cosE

= −ρA
m
CDa

2
(e2 + 1 + 2e cosE−e

1−e cosE )
3
2

(1 + e cosE−e
1−e cosE )2

√
1− e2

1− e cosE

= −ρA
m
CDa

2 (e
2(1− e cosE) + 1− e cosE + 2e cosE − 2e2)

3
2

(1− e cosE + e cosE − e2)2(1− e cosE)
1
2

√
1− e2

= −ρA
m
CDa

2 (−e2 − e3 cosE + 1 + e cosE)
3
2

(1− e2)2

√
1− e2

(1− e cosE)
1
2

= −ρA
m
CDa

2 (1− e2)
3
2 (1 + e cosE)

3
2

(1− e2)2

√
1− e2

(1− e cosE)
1
2

= −ρA
m
CDa

2 (1 + e cosE)
3
2

(1− e cosE)
1
2

. (3.59)

Analogously, for the eccentricity we have

de

dE
= −ρA

m
CDa(1− e2) cosE

(
1 + e cosE

1− e cosE

) 1
2

. (3.60)

The corresponding integrals (3.52) can be solved numerically once given a model for ρ.
We notice that we always have ∆a < 0, because (see Fig. 3.9)

(1 + e cosE)
3
2

(1− e cosE)
1
2

> 0.

Moreover, ∆e < 0 because the function cosE
(
1+e cosE
1−e cosE

) 1
2 behaves in the way depicted

in Fig. 3.9 and it can be proved that the area underneath the x−axis is smaller than
the one above it.
The main effect due to the atmospheric drag is to shrink the orbit and as long as the
satellite approaches the Earth, its orbital velocity increases. This is sometimes referred
as the drag paradox. Let us consider a circular orbit and the expressions (3.29) and (3.30)
derived from the energy equation, namely,

∆n = −3

2

n

a
∆a = − 3

na2
∆E ,

that is,
∆T = 3

a

µ
T∆E , (3.61)

where T is the orbital period. Moreover, for a circular orbit the speed is

v =

√
µ

a
,
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Figure 3.10: The integrand function to obtain the secular effect in eccentricity due to the
atmospheric drag.

and thus
√
a∆v +

1

2

v√
a
∆a = 0 =⇒ ∆v = −

√
a

µ
∆E . (3.62)

In other words, as a general rule, if the force is such that the semi-major axis a decreases
then

• the specific energy decreases;

• the orbital period decreases, i.e., the mean motion increases;

• the circular velocity increases.

3.2.3 Atmosphere Density Models

An accurate analysis of the perturbations induced by the drag on the orbit depends
inevitably on the atmospheric density model adopted. As a matter of fact, ρ is deter-
mined empirically on the basis of the altitude and the time. In this process the solar
flux variability is crucial and at least the following factors must be considered:

• solar activity, which is periodic in 11 years;

• day-night cycle, ρ being maximum at noon and minimum at midnight;

• geomagnetic storms;

• ultraviolet wavelength radiation, with a period of 27 days.
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Since the ’50s different models have been developed, we recall in particular the Jacchia
-Roberts and the NRLMSIS-00 ones. In a first approximation, we can consider the static
isotherm exponential one, namely,

ρ = ρ0 exp

(
−h− h0

H

)
, (3.63)

where

• h is the altitude of the s/c;

• h0 a reference altitude;

• ρ0 the density corresponding to h0;

• H a given scale factor, which represents the altitude at which the density is ρ0/e.

This model is quite reliable if h does not differ too much from h0, in order to ensure the
isotherm assumption. In Mengali & Quarta (2006) and Vallado (2007), for instance, you
can find the values corresponding to h0, ρ0,H.

3.2.4 Orbital Decay and Satellite’s Lifetime

For what seen so far, LEO objects (see Sec 1.14.1) experience an orbital decay due to the
atmospheric drag. If corrections maneuvers are not applied, then in a sufficient amount
of time they can can reentry to the Earth. This mechanism is exploited as natural
removal of space debris in LEO.
We can define the satellite lifetime as the interval of time going from the launch to the
atmospheric reentry. It is simply

L = NT = 2πN

[
1

µ

(
hp + r⊕
1− e

)3
] 1

2

, (3.64)

where hp is the perigee altitude and N is the estimated number of revolutions. In
particular, N depends on ρ and the ballistic coefficient m/(ACD), which measures how
much the satellite is sensitive to the drag effect. Low values of m/(ACD) result in high
orbital elements variations.
For a spacecraft in circular orbit at an altitude of 250 km amd A/m ≈ 0.01 m2/kg, we
have L ≈ 20 days and the station-keeping ∆v−budget required is about 570 m/s per
year. If the altitude is 400 km the lifetime increases of about 200 days and ∆v ≈ 24 m/s
per year, at 800 km the drag takes hundreds of years to remove the satellite from the
orbit.

3.3 Solar Radiation Pressure

The solar radiation pressure is a non-conservative perturbation, due to the electromag-
netic radiation coming from the Sun. In this case, the difficulties consist in modeling
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the solar cycle and its variation and in knowing accurately the area of the spacecraft
exposed to the solar radiation, along with its shape, orientation and optical properties.
All these satellite’s parameters are not constant in time, let us think, for instance, to
the orbital attitude or to the fact that the material of the surface degrades and thus the
reflectivity coefficients change.
In what follows, we consider only the direct radiation from the Sun and not the one
reflected by the Earth to the satellite, this is the albedo. Also, the Sun is assumed as a
point mass source and the solar rays as perfectly parallel.

3.3.1 Modeling

The solar radiation, that is, a photon beam, propagates in the vacuum with velocity
equal to the speed of light c = 299792458 m/s and at striking the surface of the satellite
it exerts a pressure on it.
Generally speaking, the pressure is proportional to the energy flux Φ, which is the energy
E passing through a given area A per unit of time, namely,

Φ =
∆E

A∆t
. (3.65)

Indeed, the pressure due to a force F on a surface A is

P =
F

A
,

where the force can be written in terms of a linear momentum change in this way

F =
∆p

∆t
.

Now, a single photon of energy E carries an impulse

p =
E

c
,

and a photon beam hitting a satellite’s surface changes its impulse of an amount

∆p =
∆E

c
=

ΦA∆t

c
. (3.66)

It follows that the perturbing force due to the solar radiation pressure is in modulus
equal to

F =
ΦA

c
, (3.67)

and the pressure is

P =
Φ

c
. (3.68)

At 1 AU = 1.49597870691× 108 km, the mean value of P is

P̄ = 4.56× 10−6 Pascal.
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Since the orbit of the Earth is not circular the solar radiation pressure P varies during
the year in this way

P = P̄

(
a⊙

||r− r⊙||

)2

≈ P̄

(
a⊙
r⊙

)2

, (3.69)

where a⊙ = 1 AU is the mean distance between the Sun and the Earth, r is the geocentric
radius vector of the satellite and r⊙ is the geocentric position of the Sun.
Not all the photons are absorbed by the surface: some are absorbed, some are reflected
specularly, some are reflected diffusely according to the corresponding reflectivity coeffi-
cients ρa, ρs, ρd, such that

ρa + ρs + ρd = 1. (3.70)

Let us look to Fig. 3.11, where

• A is the area of the satellite exposed to the Sun;

• n̂ is the unit direction normal to A;

• ŝ is the unit direction between A and the Sun, directed toward the Sun;

• ϕ is the solar incident angle between n̂ and ŝ.

The accelerations caused by three portions of the photon beam are, respectively,

fa = −P A
m
ρa cosϕŝ,

fs = −2P
A

m
ρs cos

2 ϕn̂, (3.71)

fd = −P A
m
ρd cosϕ

(
ŝ+

2

3
n̂

)
,

and thus

f = −P A
m

cosϕ

[
(ρa + ρd) ŝ+

(
2ρs cosϕ+

2

3
ρd

)
n̂

]
. (3.72)

In a first approximation, we can consider ŝ ∥ n̂, this is the so-called cannonball model,
in such a way that

f = −A

m
P

(
ρa + 2ρs +

5

3
ρd

)
r⊙

||r⊙||
. (3.73)

Some authors denote ρa + 2ρs +
5
3ρd as 1 + β or CR ∈ [0, 2]. In particular β is the index

of reflection and we have

• β = 0 for a perfectly absorbing surface;

• β = 1 for a perfectly reflecting surface;

• β = −1 for a perfectly transmitting surface, i.e., transparent.
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Figure 3.11: The geometry associated with the solar radiation pressure perturbation. A is
the area of the satellite exposed to the Sun, n̂ is the unit direction normal to A, ŝ is the unit
direction between A and the Sun directed toward the Sun and ϕ is the solar incident angle.
fa and fs are the perturbing accelerations due the photons, which are absorbed and reflected
specularly, respectively.

3.3.2 Effects

The perturbation due to the solar radiation pressure in modulus varies linearly with the
area-to-mass ratio A/m and in a first approximation we can consider it independent from
the altitude of the orbit, see Eq. (3.69) and Fig. 3.1. Compared to other effects,

• for low values of A/m, up 0.01 m2/kg, it is some orders of magnitude less significant
than the perturbation due to J2;

• for A/m ≈ 1.63 m2/kg the two effects are comparable for a GEO s/c;

• for A/m > 10 − 20 m2/kg the solar radiation pressure becomes the dominant
perturbation for GEO satellites.

Since we deal with a non-conservative perturbation, we have to apply the Gauss plane-
tary equations to (3.73). In the {r̂, θ̂, ĥ} reference system, the unit components of the
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perturbing acceleration can be written as

f r = cos2
i

2
cos2

ϵ

2
cos

(
λ⊙ − u− Ω

)
− sin2

i

2
sin2

ϵ

2
cos

(
λ⊙ − u− Ω

)
−

−1

2
sin i sin ϵ

[
cos

(
λ⊙ − u

)
− cos

(
−λ⊙ − u

)]
−

− sin2
i

2
cos2

ϵ

2
cos

(
−λ⊙ − u− Ω

)
− cos2

i

2
sin2

ϵ

2
cos

(
−λ⊙ − u− Ω

)
,

fθ = cos2
i

2
cos2

ϵ

2
sin

(
λ⊙ − u− Ω

)
− sin2

i

2
sin2

ϵ

2
sin

(
λ⊙ − u− Ω

)
−

−1

2
sin i sin ϵ

[
sin

(
λ⊙ − u

)
− sin

(
−λ⊙ − u

)]
−

− sin2
i

2
cos2

ϵ

2
sin

(
−λ⊙ − u− Ω

)
− cos2

i

2
sin2

ϵ

2
sin

(
−λ⊙ − u− Ω

)
,

fh = sin i cos2
ϵ

2
sin

(
λ⊙ − Ω

)
− sin i sin2

ϵ

2
sin

(
λ⊙ +Ω

)
− cos i sin ϵ sinλ⊙,

where ϵ is the obliquity of the ecliptic (see Sec. ??), λ⊙ the ecliptic longitude of the
Sun and u = ω + θ is the argument of latitude (θ̃ in Sec. 2.3.1). By considering these
expressions, it turns out that the solar radiation pressure causes periodic variations in
all orbital elements, especially long-period ones in e, ω, which can be written as

de

dt
= −3

2
CRP

A

m

√
1− e2

na
[C1 sinA1 + C2 sinA2 + C3 (sinA3 + sinA4) + C4 sinA5 + C5 sinA6] ,

(3.74)
dω

dt
=

3

2
CRP

A

m

√
1− e2

nae
[C1 cosA1 + C2 cosA2 + C3 (cosA3 + cosA4) + C4 cosA5 + C5 cosA6] ,

where

C1 = cos2
i

2
cos2

ϵ

2
,

C2 = sin2
i

2
sin2

ϵ

2
,

C3 =
1

2
sin i sin ϵ,

C4 = − sin2
i

2
cos2

ϵ

2
,

C5 = − cos2
i

2
sin2

ϵ

2
,
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and

A1 = λ⊙ − ω − Ω,

A2 = λ⊙ − ω +Ω,

A3 = λ⊙ − ω,

A4 = λ⊙ + ω,

A5 = λ⊙ + ω − Ω,

A6 = λ⊙ + ω +Ω.

We notice that for GEO satellites, C2, C3, C4 vanish.

3.4 Third-Body Perturbation

Let us consider the perturbation due to the presence of a third body, either Sun or Moon
for satellites around the Earth. It becomes significant as long as the altitude increases
and thus it strongly affects the apogee of elliptic orbits and cannot be neglected to predict
the dynamics in MEO and GEO. The main issue in this case regards the position of Sun
and Moon, especially the latter, with respect to the equatorial plane.

3.4.1 Modeling

Let us consider a system composed by three bodies, m1, m2 and m3. In an inertial
reference system {̂i, ĵ, k̂} the equation of motion for each mass ml with l = 1, 2, 3 can be
written as

ml
d2rl
dt2

= G
3∑

q=1,l ̸=q

mlmq

r3lq
(rq − rl) , (3.75)

where rl = xl̂i+ yl̂j+ zlk̂ is the radius vector corresponding to ml and rlq = rq − rl, see
Fig. 3.12. We notice that (3.75) can be generalized to n masses, not just 3. In that case,
we speak of the n-Body Problem.
Let us assume that m1 is the Earth, m2 the perturbing body and m3 the satellite. Eq.
(3.75) gives

d2r1
dt2

= G
m3

r313
(r3 − r1) +G

m2

r212
(r2 − r1) , (3.76)

and
d2r3
dt2

= G
m1

r331
(r1 − r3) +G

m2

r332
(r2 − r3) . (3.77)

Now, let us translate the origin of the reference system at the Earth and define (see Fig.
3.12)

r := r3 − r1 ≡ r13, rp := r2 − r1 ≡ r12, ρ := r2 − r3 ≡ r32.
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Figure 3.12: Relative position of three bodies in an inertial reference system.

Then, the equation of motion for the satellite relative to the Earth is

d2r

dt2
=

d2r3
dt2

− d2r1
dt2

= G
m1

r331
(r1 − r3) +G

m2

r332
(r2 − r3)−G

m3

r313
(r3 − r1)−G

m2

r312
(r2 − r1)

= −G(m1 +m3)
r

r3
+Gm2

(
ρ

ρ3
− rp
r3p

)
. (3.78)

We notice that the first term on the right-hand side is the classical Keplerian one, the
other represents the perturbation on the satellite due to the mass m2. This perturbation
consists in particular in one direct term ρ/ρ3, i.e., m2 attracts gravitationally directly
m3, and in one indirect term rp/r

3
p, i.e., m2 also attracts the Earth and thus move it.

We can write

Gm2

(
ρ

ρ3
− rp
r3p

)
=

∂

∂r

[
Gm2

(
1

ρ
− r · rp

r3p

)]
, (3.79)

that is, the perturbing function for the third-body effect is

R = Gm2

(
1

ρ
− r · rp

r3p

)
, (3.80)

which is called disturbing function associated with the disturbing mass m2. It follows
that the third-body perturbation is conservative.
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If r << rp, then the disturbing function can be written as

R =
Gm2

rp

∞∑
k=2

Pk(cosS)

(
r

rp

)k

(3.81)

where S is the angle between r and rp and Pk is the Legendre polynomial of degree k.

3.4.2 Effects

The third-body perturbation gives rise to secular variations in Ω, ω, which can be ex-
pressed, by means of (3.81) and for a third body moving on a circular orbit, as

dΩ

dt
= −

3Gm2

(
2 + e2

) (
2− 3 sin2 ip

)
16r3pn

√
1− e2

cos i, (3.82)

dω

dt
=

3Gm2

(
2− 3 sin2 ip

)
16r3pn

√
1− e2

(
e2 + 4− 5 sin i

)
, (3.83)

where ip is the orbital inclination of the third body with respect to the equatorial plane.
The variation in the longitude of the ascending node is a precession about the pole of
the ecliptic if the third body m2 is the Sun, about an axis which is normal to the lunar
orbital plane if the third body m2 is the Moon. The effect reminds what we have seen is
caused by J2 and analogous considerations can be drawn depending on whether the orbit
is prograde or not. Actually, the effects due to both Sun and Moon are to be considered
at high altitudes: the Sun is very massive, while the Moon is very close to the Earth.
The resulting precession due to Sun, Moon and J2 will be about a mean pole between
the Earth’s and the ecliptic ones.
Moreover, we have long-period perturbations in e, i,Ω, ω. The long-period variation in
inclination is especially important for GEO satellites: it can be proved that, by con-
sidering at the same time the perturbation due to Sun, Moon and J2 and eliminating
monthly and yearly variations, we have

di

dt
=

2∑
j=1

3

8

n2j
n
kj

[
cos i sin (2ij) sin (Ω− Ωj) + sin i sin2 ij sin (2Ω− 2Ωj)

]
, (3.84)

dΩ

dt
=

2∑
j=1

3

16

n2j
n sin i

kj
[
sin (2i)

(
1− 3 cos2 ij

)
+ 2 cos (2i) sin (2ij) cos (Ω− Ωj)

]
+

+
2∑

j=1

3

16

n2j
n sin i

kj
[
sin (2i) sin2 ij cos (2Ω− 2Ωj)

]
− 3

2
J2

(r⊕
a

)2

n cos i, (3.85)

where the subscript j indicates Sun and Moon, k1 = 1 for the Sun, k2 = 1/82.3 for the
Moon. We notice that (3.85) reflects a coupling between the variation in i and the one
in Ω.
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4.1 Introduction

The motion of a satellite can be controlled by means of a propulsion system, which helps
either to change the orbital parameters to achieve some specific goals or to correct any
deviations to the nominal orbit due to the perturbations acting on the body. There exist
different options that can be applied, in particular we distinguish between impulsive
maneuvers and low thrust strategies. The formulae we will give in Sec. 4.2 are valid for
any artificial object embedded with a propulsion system and explain how the distinction
can be made. In the whole chapter, we assume that the only natural force acting on the
spacecraft is given by one central body, that is, the Keplerian assumptions are considered.
Concerning the impulsive case, we recall that two orbits sharing one focus can intersect
at most in two points and that to move from one to the other by means of a single burn
is possible only when there exists at least one intersection. Otherwise, if the two orbits
do not intersect, then at least two impulsive maneuvers are required.
Here we are not going to describe all the possible transfers between two nominal orbits
and, in the second part of the chapter, we will introduce the basis of low thrust transfers.

4.2 Tsiolkowsky’s Equation

Let us consider a rocket of mass m0 at some initial time t0 moving with velocity v0 with
respect to an inertial reference system in the vacuum in gravity-free space. The ejection
of some propellant by the propulsion system makes the rocket to move. Let ve be the
velocity of exhaustion of the propellant mass with respect to the rocket. Its modulus
ve = ||ve|| is called effective exhaust velocity or equivalent exhaust velocity. The mass of
the rocket changes in time according to

m(t) = me +mp(t), (4.1)

where me is the empty mass which remains constant and mp(t) is the mass corresponding
to the propellant.
At time t, the rocket has mass m(t) and it is moving with a velocity v(t). At t+ dt, its
mass is m(t)− dm and its velocity v(t)+ dv, while the expelled propellant has mass dm
and velocity v(t)− ve. The law of conservation of the linear momentum reads

m(t)v(t) = (m(t)− dm)(v(t) + dv) + dm(v(t)− ve),
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that is,
0 = m(t)dv − dmdv − vedm.

By neglecting the second order term dmdv, we obtain

m(t)dv = vedm, (4.2)

which can be integrated to give

vf − v0 = veln
(m0

mf

)
, (4.3)

where we have considered that ve is constant and its direction is opposite to that of vf

and v0.
Moreover, the magnitude of the thrust provided by the propulsion system is1

T = −ve
dm

dt
. (4.4)

In the propulsion design, the specific impulse is defined as the ratio between the magni-
tude of the thrust and the product between the magnitude of the acceleration of gravity
at sea level g0 and the propellant mass flow rate, that is,

Isp :=
ve
g0
. (4.5)

This is a characteristic of the type of propellant used and has the dimensions of time. In
Tab. 4.1 we give the values corresponding to some propulsion systems. From (4.3) and
(4.5), we get

vf − v0 = g0Ispln
(m0

mf

)
, (4.6)

which is said rocket equation or Tsiolkowsky’s equation. This indicates how much mass
must be consumed to get to a nominal speed vf starting from v0, namely,

m0 −mf

m0
= 1− exp

(
−
vf − v0
g0Isp

)
. (4.7)

4.2.1 Gravity Losses

Now, let us assume that the rocket is ascending against a gravity force with a flight path
angle γ.

1This is true if we consider negligible the difference between the pressure at the exit from the nozzle
pe and the free stream pressure p0. Otherwise,

T = −ve
dm

dt
+ (pe − p0)A,

where A is the exit area of the nozzle.
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Type Isp(s) T (N)

N2 60 0.1–50
H2 250 0.1–50

Mono-propellant Liquid 140–235 0.1–12×106

Bi-propellant Liquid 320–460 0.1–12×106

Solid 260–300 0.1–12×106

Hybrid 290–350 0.1–12×106

Solid Core Nuclear 800–1100 up to 12×106

Liquid Core Nuclear 3000 up to 12×106

Gas Core Nuclear 6000 up to 12×106

Thermoelectric 500–1000 10−4–20
Electromagnetic 1000–7000 10−4–20

Electrostatic 2000–10000 10−4–20

Table 4.1: Specific impulse and thrust level corresponding to some propulsion systems (Men-
gali & Quarta, 2006).

Eq. (4.2) turns out to be

m0dv = −vedm−mg sin γdt, (4.8)

where we take into account the sense of the direction of the acceleration of gravity g.
By integrating (4.8), we obtain

v − v0 = veln
(m0

m

)
−

∫ t

t0

g(h) sin γdt, (4.9)

where we consider g to vary with the altitude h. Let us analyze the just written equation.
First of all, to increase v we need either to increase ve or m0/m. The term

∫ t
0 g(h) sin γdt

is said gravity loss and results to be zero in the ideal case where the impulsive burn takes
place instantaneously. Also, it should be clear that the lower the altitude we thrust the
larger the effort. Gravity losses are also significant for high values of γ.
In real world situations, speaking in general terms for any artificial orbital body, the
thrust is given for a finite amount of time. If this interval is negligible with respect to
the whole duration of the mission, the change in velocity can be considered impulsive
and in particular, for this approximation to be true it is necessary to estimate the ratio
T/Ws where Ws is the local weight of the object, namely,

Ws := m
µ

r2
. (4.10)

We can distinguish between

• high thrust: T/Ws ≥ 0.5, that is, the thrust is dominant and we can consider the
impulsive approximation;
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• low thrust: T/Ws ≤ 10−5, that is, the thrust acts continuously and the body moves
on a spiral.

One possible way to study the second case is using the perturbations theory approach.
In the intermediate cases, the force due to the thrust and the one due to the gravity
are both important and it is advisable to exploit numerical tools starting from semi-
analytical models as first approximation.
Finally, for sake of completeness, for a launcher in Eq. (4.9) it is required to add one
term, which accounts for the perturbation due to the atmospheric drag. Following Sec.
3.2, we have

v − v0 = veln
(m0

m

)
−

∫ t

t0

g(h) sin γdt−
∫ t

t0

D

m
dt, (4.11)

being D = 1/2ρAv2CD.

4.3 Impulsive Coplanar Transfers

Let us consider two nominal coplanar circular orbits of radius ri and rf , respectively,
with ri < rf at a given central body of mass parameter µ. We are going to describe the
two classical options that can be applied to move the spacecraft from one to the other.
In both cases, the maneuvers are assumed as completely impulsive, the flight path angle
is zero and therefore there is not any gravity loss.

4.3.1 Hohmann Transfer

The Hohmann transfer is the minimum cost two-impulses transfer between coplanar
circular orbits. A first maneuver ∆v1 is applied along the direction of motion of the
spacecraft to transfer it onto an elliptic orbit of semi-major axis

a =
ri + rf

2
. (4.12)

This intermediate ellipse is such that the pericenter radius is equal to ri and the apocenter
one to rf . After half of one period of the ellipse, namely,

time of flight = π

√
a3

µ
, (4.13)

a second maneuver ∆v2 is applied again along the tangent direction of motion to inject
the spacecraft into the final orbit. See Fig. 4.1.
From the energy equation (1.37), the magnitude of the velocity on the ellipse at the
pericenter is

vperi =

√
µ
( 2

ri
− 1

a

)
=

√
2µ

( 1

ri
− 1

ri + rf

)
,
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Figure 4.1: The Hohmann transfer.

the one at the apocenter is

vapo =

√
µ
( 2

rf
− 1

a

)
=

√
2µ

( 1

rf
− 1

ri + rf

)
,

and the ones on the initial and final circular orbits

vcirci =

√
µ

ri
, vcircf =

√
µ

rf
.

The two maneuvers are thus

∆v1 = vperi − vcirci , (4.14)

and

∆v2 = vcircf − vapo. (4.15)

The total cost of the transfer is

∆vHoh = ∆v1 +∆v2.

In the case where the aim is to move from the outer to the inner orbit the two maneuvers
are applied in the direction opposite to the motion of the spacecraft.
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Figure 4.2: The bi-elliptic transfer.

Notice that

∆vHoh

vcirci
=

√
2�µ

(
1
ri
− 1

ri+rf

)
√

�µ
ri

− 1 +

√
�µri

�µrf
−

√
2�µ

(
1
rf

− 1
ri+rf

)
√

�µ
ri

=

=

√
2− 2ri

ri + rf
− 1 +

√
ri
rf

−

√
2ri
rf

− 2ri
ri + rf

=

=

√
2R

1 +R

(
1− 1

R

)
− 1 +

√
1

R
, (4.16)

where R = rf/ri. By differentiating the expression just written in terms of R, it is
possible to prove that the function ∆v/vcirci has a maximum at Rmax ≈ 15.58.

4.3.2 Bi-elliptic Transfer

In the case of the bi-elliptic transfer, three maneuvers are applied and two intermediate
ellipses are considered. The first impulse along the direction of motion aims at moving
the spacecraft from the inner circular orbit to an elliptic orbit whose pericenter coincides
with ri, while the apocenter is equal to rt > rf , where rt is a parameter chosen by the
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orbit designer. After a time

t1 = π

√
a3t
µ
, with at =

ri + rt
2

, (4.17)

a second impulse is given tangentially to transfer to an ellipse of semi-major axis

af =
rt + rf

2
, (4.18)

being the apocenter equal to rt and the pericenter equal to rf . After a time

t2 = π

√
a3f
µ
, (4.19)

the last maneuver is applied to insert into the final orbit. This time the maneuver is in
the direction opposite to the motion of the spacecraft. See Fig. 4.2. The total time of
flight is thus

time of flight = t1 + t2,

and the total cost
∆vbe = ∆v1 +∆v2 +∆v3,

where

∆v1 =

√
2µ

( 1

ri
− 1

ri + rt

)
− vcirci ,

∆v2 =

√
2µ

( 1

rt
− 1

rf + rt

)
−

√
2µ

( 1

rt
− 1

ri + rt

)
, (4.20)

∆v3 = −vcircf +

√
2µ

( 1

rf
− 1

rf + rt

)
.

Let us introduce the parameter R∗ = rt/ri and refers each of the three maneuvers to the
initial orbital velocity of the spacecraft. We get

∆v1
vcirci

=

√
2R∗

1 +R∗ − 1,

∆v2
vcirci

=

√
2
( 1

R∗ − 1

R+R∗

)
−

√
2
( 1

R∗ − 1

1 +R∗

)
, (4.21)

∆v3
vcirci

= −
√

1

R
+

√
2
( 1

R
− 1

R+R∗

)
,

that is,

∆vbe
vcirci

=

√
2R∗

1 +R∗−1−
√

2
( 1

R∗ − 1

1 +R∗

)
+

√
2
( 1

R∗ − 1

R+R∗

)
+

√
2
( 1

R
− 1

R+R∗

)
−
√

1

R
.

(4.22)
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Figure 4.3: Comparison of the total ∆v budget required by the Hohmann (red) and bi-elliptic
transfer as a function of R and R∗. On the right a closer view for 11 < R < 16. The circles
in color report when R∗ = R.

If R∗ → R then clearly we fall back into the Hohmann case. Instead for R∗ → ∞, the
transfer is said bi-parabolic and the total cost is

∆v∞ = (
√
2− 1)

(
1 +

√
1

R

)
vcirci . (4.23)

Notice that this is the ideal situation when ∆vbe/vcirci reaches its minimum as a function
of R∗ and can be thus considered for comparing the two strategies described. Indeed, the
fact that the third maneuver is applied on the direction opposite to the orbital motion
makes ∆v3 a wasted energy. As a consequence, the larger the semi-major axis of the two
intermediate orbits the more efficient the bi-elliptic transfer.

4.3.3 Comparison between Hohmann and Bi-elliptic Transfers

Let us look to Fig. 4.3, where we have plotted the total ∆v budget relative to the
initial circular orbital velocity for the Hohmann and the bi-elliptic transfer as a function
of R and R∗, see (4.16) and (4.22). To analyze this plot, let us first notice that the
Hohmann transfer is as much expensive as the bi-parabolic one in terms of impulsive
burns when ∆vHoh = ∆v∞, that occurs for R̃ ≈ 11.94. In other words, for any R > R̃
the bi-parabolic transfer is more convenient than the Hohmann one (to the detriment
of the time of flight), while for R < R̃ the Hohmann case is preferable to the bi-elliptic
(not just bi-parabolic) one.
Moreover, we can see that a curve corresponding to the bi-elliptic transfer for a given
value of R∗ intersects the curve corresponding to the Hohmann strategy twice. The
second time, in particular, takes place when R∗ = R. From that point on R∗ < R and
thus it is more convenient to apply the Hohmann transfer. On the other hand, from Sec.
4.3.1 we know that at Rmax ≈ 15.58 the cost associated with the Hohmann case attains
a maximum and thus for any R∗ > R > Rmax the bi-elliptic transfer is less expensive.
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Figure 4.4: The geometry associated to a plane change maneuver.

Finally, the first intersection between the two kinds of curve takes place for R̃ ≤ R <
Rmax, that is, the choice between the two designs must be done according to R∗. It
is possible to prove that it is better to adopt the bi-elliptic strategy if R∗ > R∗

0, the
Hohmann one otherwise. The value R∗

0 is defined as

R∗
0 =

A+
√
B

2
, (4.24)

with

A =
1

R

[(M − 3N)2 + 1

(M +N)2 − 1

]
+

1

R2

[ 1

1− (M +N)2

]
,

B = A2 +
4

R[(M +N)2 − 1]
,

M =
P 2 − 1/R

2P
,

N =
1

2P
,

P =
R− 1

R

√
R

1 +R
+

√
2

R
.

4.4 Impulsive Non-coplanar Transfers

Let us consider two circular orbits of given radius and different inclination, say i1 and
i2 respectively. To move from one to the other, it is required to apply one maneuver at
one of the nodes (ascending or descending).
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Figure 4.5: Maneuver required to change the inclination of a circular orbit.

Indeed, let us refer to Fig. 4.4, where we have depicted two generic orbits, i.e., not
necessarily circular. At the intersection point the maneuver is performed to accomplish
the transfer. The change in velocity causes a plane change equal to the angle β. Using
the spherical law of cosines, we have

cos (π − i2) = − cos i2 = − cos i1 cosβ + sin i1 sinβ cosu1, (4.25)

where u1 = θ1 + ω1 is the argument of latitude (θ̃ in Sec. 2.3.1), being θ1 the true
anomaly on the first orbit at the time of the maneuver. Also,

cosβ = − cos i1 cos (π − i2) + sin i1 sin (π − i2) cos (Ω2 − Ω1) =

= cos i1 cos i2 + sin i1 sin i2 cos (Ω2 − Ω1). (4.26)

In other words, if the intersection of the two orbits, that is, the time of the maneuver,
occurs on the reference plane, then Ω2 = Ω1 and thus the final orbit will differ from the
initial one only in inclination.
So, if our aim to maintain semi-major axis and argument of ascending node of a nominal
circular orbit and vary its inclination, then it means that the modulus of the velocity on
the final orbit will also not change and that the maneuver must be applied at one of the
nodes. Its modulus must be equal to (see Fig. 4.5)

∆v = 2vcirc sin
β

2
. (4.27)
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Figure 4.6: Polar coordinates.

4.5 Coplanar Continuous Thrust Transfers

Low thrust devices can be exploited to change size, shape and plane of a nominal orbit,
as well as impulsive burns do. The classic example considers to use an electric engine
to raise the altitude of a spacecraft at the Earth, but more complex missions have flown
under low thrust configurations. We mention Deep Space 1 to the comet 19P/Borrelly at
the end of the ’90s, SMART-1 to the Moon in 2003 and the future BepiColombo mission
to Mercury.
Low thrust trajectories are explained here by making simplified assumptions on the
magnitude and direction of the corresponding acceleration. This approach gives us some
analytical insights on the problem. In more realistic situations, numerical methods and
optimization techniques are needed.
Let us rewrite the equations of motion of a spacecraft moving because of a thrust and
the gravitational acceleration due to a nominal central body. Following Sec. 4.2, we
have2 

ṙ = v,

v̇ = µ r
r3

+ T
m ,

ṁ = − T
g0Isp

.
(4.28)

2Notice that the third equation can be adopted only when m(t) does not present a discontinuity,
which occurs, for instance, when some modules are detached from the main body of the object.
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Under the hypothesis of constant low thrust, we have

∂T

∂t
=
∂T

∂r
= 0.

Let us also assume that

• at time t = t0 the spacecraft is moving on a circular orbit of radius r0;

• the thrust direction always belongs to the orbital plane and thus this will not
change;

• the acceleration due to the thrust is constant in modulus, namely aT = T/m.
This means, in particular, that we neglect the mass variation due the propellant
consumption.

In an inertial reference system with origin at the central body (see Fig. 4.6), the equations
of motion read (recall Eqs. (1.14) and (1.19))

ṙ = vr,

rθ̇ = vθ,

v̇r = r̈ − rθ̇2 =: ar,

v̇θ = 2ṙθ̇ + rθ̈ =: aθ.

(4.29)

4.5.1 Constant Tangential Acceleration

Let us consider the case when the only acceleration on the radial direction is the one due
to the gravity and the thrust due to the propulsion system takes place on the tangential
direction, this is,

ar = − µ

r2
, aθ = aT .

From Eqs. (4.29), we have {
r̈ − rθ̇2 = − µ

r2
,

2rṙθ̇ + r2θ̈ = raT .
(4.30)

Let us assume that for any t the orbit of the spacecraft can be approximated by a circular
orbit, this is, aT is low enough that r̈ ≈ 0. With this hypothesis, the centrifugal term is
compensated by the gravitational acceleration at each instant, namely,

rθ̇2 ≈ µ

r2
, =⇒ θ̇ ≈

√
µ

r3
. (4.31)

Notice that, because of this assumption, we are allowed to consider as coincident the
transversal and the tangential directions.
From the last equation in (4.30), we get

2rṙθ̇ + r2θ̈ =
d(r2θ̇)

dt
=

d

dt

√
µr =

1

2
ṙ

√
µ

r
= raT , =⇒ 1

2

√
µ

r3
dr = aTdt.
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By integration, we then obtain

−
√
µ

r
+

√
µ

r0
= aT (t− t0),

that is,

r =
r0v

2
0

[v0 − aT (t− t0)]2
, (4.32)

where v0 =
√
µ/r0 is the modulus of the velocity on the circular orbit at t0.

Now, we can ask ourselves when the spacecraft will manage to escape from a close orbit
around the central orbit, this is, when the orbital energy varies from E < 0 to E = 0
thanks to the low thrust. Because of (4.31), we have

v2

2
=

1

2
(v2r + v2θ) =

1

2
(ṙ2 + r2θ̇2) =

1

2

(
ṙ2 +

µ

r

)
,

and therefore

E =
v2

2
− µ

r
=
ṙ2

2
− µ

2r
= 0 ⇐⇒ ṙ =

√
µ

r
.

Moreover, from (4.31)

θ̈ = −3

2
ṙ

√
µ

r5
,

and from the last equation in (4.30) we get

−3

2
rṙ

√
µ

r5
+ 2ṙ

√
µ

r3
=

1

2
ṙ

√
µ

r3
= aT =⇒ 1

2

√
µ

r

√
µ

r3
=

1

2

µ

r2
= aT .

Since µ = v20r0, the radius of the escape orbit as a function of the initial radius and
velocity and of the thrust acceleration is

re =
r0v0√
2r0aT

. (4.33)

By means of (4.32) we know the time which is required to achieve the escape condition,
namely,

re =
r0v

2
0

[v0 − aT (te − t0)]2
=

r0v0√
2r0aT

, =⇒ aT (te − t0) = v0 −
√
v0(2r0aT )

1/4,

this is,

te = t0 +
v0
aT

(
1− (2r0aT )

1/4

√
v0

)
. (4.34)
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4.5.2 Constant Radial Acceleration

Let us consider now the other case, when the thrust acceleration is given along the radial
direction. From Eqs. (4.29), we have now{

r̈ − rθ̇2 = − µ
r2

+ aT ,

2rṙθ̇ + r2θ̈ = d(r2θ̇)
dt = 0.

(4.35)

The last equation tells us that the angular momentum h = r2θ̇ is an integral of motion.
Thus

r2θ̇ = r20 θ̇0 = r0v0 =
√
µr0,

since at t0 we assumed the orbit to be circular. The first equation in (4.35) results in

r̈ − rθ̇2 +
µ

r2
= r̈ − µr0

r3
+
µ

r2
= aT , =⇒ aT = r̈ +

µ

r3
(r − r0).

By multiplication for ṙ we get

ṙaT = ṙr̈ + ṙ
µ

r3
(r − r0),

which integrated (recall that aT is assumed constant) gives

raT + constant =
1

2
ṙ2 − µ

r
+

1

2
µ
r0
r2
.

Since at t0 we have ṙ0 = 0,

constant = −r0aT − µ

2r0
, (4.36)

and hence

raT−r0aT−
µ

2r0
=

1

2
ṙ2−µ

r
+
1

2
µ
r0
r2
, =⇒ ṙ2 = 2aT (r−r0)+µ

−r20 + 2rr0 − r2

r0r2
.

The radial velocity as a function of the radius is thus

ṙ2 = (r − r0)
(
2aT − µ

r − r0
r0r2

)
. (4.37)

In order to find the radius corresponding to the escape condition, let us proceed as in
the previous section. The kinetic contribution is

v2

2
=

1

2
(ṙ2 + r2θ̇2) =

1

2

[
(r − r0)

(
2aT − µ

r − r0
r0r2

)
+
µr0
r2

]
,

and the condition E = 0 is fulfilled for re such that

1

2

[
(re − r0)

(
2aT − µ

re − r0
r0r2e

)
+
µr0
r2e

]
− µ

re
= 0.
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With some manipulation, we obtain

aT (re − r0) = µ
r2e +��r

2
0 −���2rer0 −��r

2
0 +���2rer0

2rer20
= µ ��r

2
e

2r0��r
2
e

=
µ

2r0
.

It follows that the escape radius is

re = r0 +
µ

2aT r0
. (4.38)

If we use this expression in (4.37), we obtain

ṙ2 = (r − r0)
( µ

r0(re − r0)
− µ

r − r0
r0r2

)
= µ

r − r0
r0r2(re − r0)

(
r2 − (r − r0)(re − r0)

)
=

2aT
r2

(r − r0)
(
r2 − (r − r0)(re − r0)

)
. (4.39)

The above expression tells us that there exists a configuration for which the radial ve-
locity is zero (apart from the trivial case of the initial circular orbit). This may happen
before the escape condition is accomplished, if the thrust acceleration is not high enough.
Indeed,

r2 − (r − r0)(re − r0) = 0 ⇐⇒ r =
(re − r0)±

√
(re − r0)(re − 5r0)

2
.

It exists r such that the escape condition is not achieved if the argument of the square
root is positive, that is, if and only if

re > 5r0.

Since we don’t want this to happen, using (4.38), it is required that

aT >
µ

8r20
, (4.40)

in order to escape from the initial circular orbit with a constant thrust on the radial
direction. In this case, the expression for the time of escape te is more complicated than
the tangential case and we do not consider it here.
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5.1 Patched Conic Approach

In the design of the trajectory required by an interplanetary mission, the first approx-
imation considered is usually the Two–Body Problem. This dynamical model provides
a good description of the motion of the probe, by assuming that one massive body at
a time is responsible of the behavior of the particle. Indeed, in the space between two
given planets, the dominant acceleration is the one due to the gravitational attraction
of the Sun, the other perturbations can be neglected and the orbit can be considered a
heliocentric Keplerian ellipse. In approaching a planet, the Keplerian orbit is instead a
planetocentric hyperbola and the interaction between the probe and the massive body is
assumed to be instantaneous, that is, the corresponding interval of time can be considered
much smaller than the whole duration of the mission. Due to the planetary encounter,
the heliocentric velocity of the spacecraft changes, both in modulus and direction, ac-
cording to the relative planet-s/c velocity and to the distance of closest approach. During
the hyperbolic approach the Sun affects the motion of the planet almost as much as it
affects the motion of the probe and this is why it can be ‘turned off’.
In this way, the whole trajectory is decomposed in arcs of conic sections, which are
patched in a suitable manner. This is why the method is called patched conic approach.
It ensures to analyze the problem easily and with a sufficient precision, at least for the
preliminary phase of the orbit design. Starting from an initial approximation of this kind,
the accurate computation of the interplanetary trajectory requires, in a second step, the
numerical integration of the equations of motion which account for all the perturbations.
As example, we will consider a hypothetic mission from the Earth to Mars. The probe
is located initially on a parking orbit around the Earth (e.g., a LEO) and must be
transferred onto a parking orbit around Mars. From a macroscopic perspective, the
spacecraft leaves the heliocentric orbit of the Earth and moves onto a different heliocentric
orbit in order to reach the heliocentric orbit of Mars. During the transfer, the main
attractor is the Sun and the study can be carried on by assuming a heliocentric Keplerian
motion. In the proximity of the Earth (Mars), the probe is assumed to be subject only
to the gravitational acceleration of the planet. In the following, we will consider that all
the orbits lie on the same orbital plane.
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Figure 5.1: Relative position of three bodies in an inertial reference system.

5.2 Sphere of Influence

The most critical issue in the patched conic approximation is to define the point of
transition between the realms of the two massive bodies (Sun and planet), say P1 and
P2 of mass m1 and m2, respectively. To this end, we introduce the concept of sphere of
influence, which, according to Laplace, is the locus of points, measured with respect to P1

and P2, where the ratios between the main gravitational acceleration and the perturbing
one are equal.
Let us recall the third-body perturbation considered in Sec. 3.4 and refer to Fig. 5.1. If
m2 is the perturbing body, then the equation of motion of the probe with respect m1 is

d2r

dt2
= −G(m1 +m3)

r

r3
+Gm2

(
ρ

ρ3
− d

d3

)
≡ fK1 + fp1 , (5.1)

where m3 the mass of the s/c, r is the radius vector of the s/c with respect to m1, d
the radius vector of m2 with respect to m1, ρ the radius vector of m2 with respect to
m3, and the subscripts K and p indicate the Keplerian and the perturbing accelerations,
respectively. Instead, if the perturbing body is assumed to be m1, then the equation of
motion of the probe with respect to m2 is

d2ρ

dt2
= −G(m2 +m3)

ρ

ρ3
+Gm1

(
r

r3
− d

d3

)
≡ fK2 + fp2 . (5.2)

In each case, the ratio between the modulus of the perturbing acceleration and the Kep-
lerian one can be interpreted as the error introduced when the former term is neglected.
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In this sense, the sphere of influence is the locus of points where the error occurred by
neglecting the gravitational acceleration of one body or the other is the same. We have

fp1
fK1

=
Gm2

∣∣∣ ρ
ρ3

− d
d3

∣∣∣
G(m1 +m3)

∣∣ r
r3

∣∣
=

m2

m1 +m3
r2

∣∣∣∣ ρρ3 − d

d3

∣∣∣∣ , (5.3)

and

fp2
fK2

=
Gm1

∣∣ r
r3

− d
d3

∣∣
G(m2 +m3)

∣∣∣ ρ
ρ3

∣∣∣
=

m1

m2 +m3
ρ2

∣∣∣∣ rr3 − d

d3

∣∣∣∣ , (5.4)

and we look for the distance r with respect to P1 such that

fp1
fK1

=
fp2
fK2

.

If we consider negligible m3 with respect to m1 and m2 and ρ ≈ d1 in (5.3), then (see
Fig. 5.1)

fp1
fK1

≈ m2

m1
r2

∣∣∣∣ρ− d

ρ3

∣∣∣∣
≈ m2

m1
r2

∣∣∣∣−r

ρ3

∣∣∣∣
≈ m2

m1

r3

ρ3
. (5.5)

Instead, by assuming d >> r, Eq. (5.4) can be approximated as

fp2
fK2

≈ m1

m2
ρ2

∣∣∣ r
r3

∣∣∣
≈ m1

m2

ρ2

r2
. (5.6)

Therefore, by equating (5.5) and (5.6), we obtain

m2

m1

r3

ρ3
=
m1

m2

ρ2

r2
,

that is, (ρ
r

)5
=

(
m2

m1

)2

. (5.7)

1This approximation is reasonable for all the planets with respect to the Sun.



108 Gravity Assist

Figure 5.2: The gravity assist. Left: the case when the encounter takes place in front of the
planet, or on its leading side. Right: the case when the encounter takes place behind the
planet, or on its trailing side.

For instance, let us consider the sphere of influence of the Earth with respect to the Sun.
We have m1 ≈ 5.97 × 1024 kg, m2 ≈ 1.99 × 1030 kg, ρ ≈ d ≈ 1.49597870691 × 108 km
and thus

r = ρ

(
m1

m2

)2/5

≈ 924216 km.

Furthermore, the sphere of influence of the Moon, taking the Earth as perturbing body,
has radius

r = ρ

(
m1

m2

)2/5

≈ 66171 km,

because m1 ≈ 7.34× 1022 kg, m2 ≈ 5.97× 1024 kg, ρ ≈ d ≈ 384400 km.

5.3 Gravity Assist

When the probe enters into the sphere of influence of a given planet, it can take ad-
vantage of the corresponding gravitational attraction in order to increase or decrease its
heliocentric orbital velocity. This concept is called gravity assist, or fly-by, or swing-by or
slingshot effect. Since the angular momentum of the Solar System (assumed as a n−Body
Problem) is constant (see Sec. ??), the effect can be seen as an exchange of energy and
angular momentum between the s/c and the planet. Because of that, the semi-major
axis, eccentricity and inclination of the heliocentric orbit of the s/c may change. At ap-
proaching the planet, the relative s/c-planet velocity does not change in modulus, but in
direction, because we deal with a hyperbolic encounter. As a consequence, the absolute
velocity of the probe with respect to the Sun changes in modulus and direction. The
first missions to exploit this phenomenon were Pioneer 10 and Mariner 10, which were
pulled, respectively, outward by the gravity of Jupiter in 1973 and toward Mercury by
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the gravity of Venus in 1974. Later on, gravity assists became a common procedure in
the design of interplanetary trajectories.
Let us denote as

• vS the heliocentric velocity of the probe;

• vp the planetocentric velocity of the probe;

• vSp the heliocentric velocity of the planet.

We have
vS = vp + vSp. (5.8)

When the s/c approaches the planet, two situations can occur, namely,

1. the s/c loses kinetic energy in its heliocentric motion (Fig. 5.2, left), that is,

||v+
S || < ||v−

S ||;

2. the s/c gains kinetic energy in its heliocentric motion (Fig. 5.2, right), that is,

||v+
S || > ||v−

S ||,

where the subscripts − and + indicate the entrance and the exit into the sphere of
influence, respectively.
Let us assume that the radius of the sphere of influence, say r∞, is infinitesimal with
respect to the radius of the orbit (assumed circular) of the corresponding planet, r⊕ for
the Earth and r♂ for Mars, and that the radius of the planet, say rp, is infinitesimal
with respect to the radius of its sphere of influence. For an observer on the planet the s/c
is seen to arrive on a hyperbolic orbit, i.e., with semi-major axis a < 0 and eccentricity
e > 1. We recall the concepts introduced in Sec. 1.6.3 for this kind of conic section. The
planetocentric arrival and departure velocities at the sphere of influence, called hyperbolic
excess velocities, v+

∞ and v−
∞, are directed along the asymptotes of the hyperbola and

are such that

||v+
∞|| = ||v−

∞|| =
√
µp
a′
,

where a′ = |a| and µp is the mass parameter corresponding to the given planet. Indeed,
from the energy’s equation (1.37)

v2∞
2

− µp
r

= −µp
2a

=⇒ v∞ = lim
r→∞

√
2µp
r

− µp
a

=

√
µp
a′
.

Let us denote with β the angle between the direction of the asymptotes and the apsis
line of the hyperbola (see Fig. 5.3). Since we assumed r∞ to be much larger than the
radius of the planet, then

cos θ∞ = lim
r→∞

1

e

(p
r
− 1

)
= −1

e
. (5.9)
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Figure 5.3: The hyperbolic excess velocity, the corresponding true anomaly and the deflection
angle.

Moreover, since
θ∞ = π − β,

we have
cosβ = − cos θ∞ =

1

e
. (5.10)

Due to the hyperbolic encounter, the hyperbolic excess velocity is turned by an angle δ,
the deflection angle, such that

2β + δ = π,

that is,
1

e
= cosβ = cos

(
π

2
− δ

2

)
= sin

δ

2
. (5.11)

If we consider negligible the interval of time spent inside the sphere of influence, then
the interaction between the probe and the planet can be seen as an impulsive maneuver.
For the law of cosines (see Fig. 5.4), we have

∆v =
√
v2∞ + v2∞ − 2v2∞ cos δ

=
√

2v2∞ (1− cos δ)

= 2v∞ sin
δ

2

= 2
v∞
e
, (5.12)
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Figure 5.4: The impulse given by the hyperbolic encounter.

which states that the impulse is maximum when the eccentricity is minimum, that is,
when e = 1. In this case, v∞ is aligned along vSp and ∆v = 2v∞. However, we must
ensure that the probe does not collide with the planet, that is, that the pericenter of the
hyperbola is higher than the radius of the planet, namely,

rperi = a′(e− 1) > rplanet, (5.13)

or
µp
v2∞

(e− 1) > rp. (5.14)

This implies

e > 1 + rp
v2∞
µp
,

and thus

emin = 1 + rp
v2∞
µp
. (5.15)

We notice that, from a practical point of view, this eccentricity is not attainable, but it
provides the limit for the maximum impulse achievable for a given value of v∞. Indeed,
from (5.12) it follows

∆vmax = 2
v∞

1 + rp
v2∞
µp

. (5.16)

Furthermore, we can look for the value of v∞ such that ∆vmax is maximum. To this
end, let us compute

∂∆vmax

∂v∞
=

2
(
1 + rp

v2∞
µp

)
− 2v∞2v∞

rp
µp(

1 + rp
v2∞
µp

)2

=
2− 2rp

v2∞
µp(

1 + rp
v2∞
µp

)2 = 0,
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that is,

v∞ =

√
µp
rp
. (5.17)

This value corresponds to a maximum because the second derivative reads

∂2∆vmax

∂v2∞
=

−4rp
v∞
µp

(
1 + rp

v2∞
µp

)2
− 2

(
1− rp

v2∞
µp

)
2
(
1 + rp

v2∞
µp

)
2rp

v∞
µp(

1 + rp
v2∞
µp

)4

=
−4rp

v∞
µp

(
1 + rp

v2∞
µp

)(
1 + rp

v2∞
µp

+ 1− rp
v2∞
µp

)
(
1 + rp

v2∞
µp

)4

=
−8rp

v∞
µp(

1 + rp
v2∞
µp

)3 < 0.

5.4 From the Earth to Mars

Let us assume the heliocentric orbits of the Earth and Mars to be circular of radius r⊕
and r♂, respectively. The aim of the transfer we are going to design is to move the s/c
from a parking circular orbit around the Earth of radius ri to a parking circular orbit
around Mars of radius rf . We decompose the trajectory in three parts, namely,

1. the planetocentric phase of escape from the gravitational field of the Earth;

2. the heliocentric transfer;

3. the planetocentric phase of capture by the gravitational field of Mars.

5.4.1 Heliocentric Transfer

Let us start from phase 2., because it defines the heliocentric velocity of the s/c at the
boundary of the Earth’s sphere of influence, say vd, and the one at the boundary of the
Mars’ sphere of influence, say va. Let us assume, for the moment, that these spheres
of influence are points, which coincide with the corresponding planet. We perform a
Hohmann transfer (see Sec. 4.3.1), starting at the time when the angular distance
between the two planets satisfies the requirement described in Sec. ?? for the rendez-
vous problem. The transfer orbit has semi-major axis equal to

a =
r⊕ + r♂

2
,

and from the energy’s equation (1.37) we compute the modulus of the departure velocity
vd, needed by the elliptic transfer. We have

v2d
2

−
µ⊙
r⊕

= −
µ⊙
2a

= −
µ⊙

r⊕ + r♂ ,
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that is,

vd =

√
2µ⊙

r♂
r⊕

(
r⊕ + r♂) . (5.18)

In the same way, we find for the arrival velocity

v2a
2

−
µ⊙
r♂ = −

µ⊙
r⊕ + r♂ ,

that is,

va =

√
2µ⊙

r⊕

r♂ (
r⊕ + r♂) . (5.19)

5.4.2 Escape and Capture

Since we perform a Hohmann transfer and for that we assume that the sphere of influence
of the Earth coincides with the planet, at the exit from the Earth’s sphere of influence
the heliocentric velocity of the s/c is orthogonal to the line joining the Earth and the
Sun and lies on the same direction of the heliocentric velocity of the Earth, say v⊕.
Therefore, the velocity of the s/c with respect to the Earth at the exit from the sphere
of influence is

v+∞ =

√
2µ⊙

r⊕ + r♂
(
r♂
r⊕

)
− v⊕, (5.20)

where
v⊕ =

√
µ⊙
r⊕

.

We notice that since we are considering a transfer to an outer planet, it starts from
behind the Earth (the energy increases). In the opposite case, i.e., when we design a
transfer to an inner planet, v+∞ above has opposite sign and we depart in front of the
Earth (the energy reduces).
We assumed that the s/c is initially located on a circular parking orbit of radius ri at
the Earth and thus velocity

vc =

√
µ⊕
ri
.

We have to apply a maneuver, say ∆vi, to move the probe from such parking orbit to
the escape hyperbolic orbit with v∞ given by (5.20). The minimum ∆vi required to this
end is the tangential maneuver corresponding to the insertion into the perigee of the
hyperbola. From the conservation of energy, at the perigee the velocity on the hyperbola
is given by

v2i
2

− µ⊕
ri

=
(v+∞)2

2
=⇒ vi =

√
(v+∞)2 + 2

µ⊕
ri
,

and thus the maneuver to apply is

∆vi = vi − vc =

√
(v+∞)2 + 2

µ⊕
ri

−
√
µ⊕
ri
. (5.21)
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Figure 5.5: The escape and capture phases.

The semi-major axis of the hyperbola can be derived from v+∞ as

a = − µ⊕

(v+∞)2
, (5.22)

and its eccentricity as
e = −ri

a
+ 1 =

ri
µ⊕

(v+∞)2 + 1, (5.23)

from which we can compute the angle β as

β = cos−1

(
1

e

)
.

This angle is important because it tells us the phase on the circular orbit, at which the
maneuver must be applied. For the escape stage, this is

θi = π + β.

See Fig. 5.5 (left).
Concerning the capture at Mars, in an analogous way we find that the hyperbolic excess
velocity at the entrance of the sphere of influence of Mars is

v−∞ = v♂ −

√
2µ⊙

r⊕ + r♂
(
r⊕
r♂

)
, (5.24)

where
v♂ =

√
µ⊙
r♂ .

To insert into the circular orbit of radius rf at Mars, the maneuver ∆vf is

∆vf = −
√
µ♂
rf

+

√
(v−∞)2 + 2

µ♂
rf

. (5.25)
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In this case, the energy reduces and thus the encounter occurs in front of the planet.
The eccentricity of the hyperbola with pericenter rf and v−∞ as above is

e =
rf (v

−
∞)2

µ♂ + 1, (5.26)

and the phase of insertion into the circular orbit, computed counterclockwise with respect
to the direction given by the velocity of Mars, is

θf = π + β = π + cos−1

(
1

e

)
.

See Fig. 5.5 (right).
Finally, we remark that if the heliocentric transfer does not consist in a Hohmann
transfer, but in a Lambert one, then in computing (5.20) and (5.24) we must take into
account the angle between the heliocentric departure/arrival velocity of the s/c and the
heliocentric velocity of the planet and thus use Eq. (??).





The Lambert’s Theorem 6

6.1 Statement of the Problem

The problem of Lambert consists in the computation of the orbit which allows to transfer
from a given position P1 to another given position P2 in a fixed time interval ∆t =
t2 − t1. This is a general issue, not applicable only to the trajectory design, but also
to the preliminary orbit determination. The solution of the Lambert’s problem, for
instance, represents a tool we can exploit for space rendez-vous (see Chap. ??).1 The
first geometrical insight of the problem is due to Gauss: the asteroid Ceres was discovered
by Giuseppe Piazzi on January 1, 1801 in its way toward the Sun and Gauss used these
data to determine its orbit and predict new observations one year later. This is why
some authors refer to the practical solution of the Lambert’s problem as to the Gauss’s
problem. In this chapter, we will see in particular how the tools developed in Sec. ??
are related to the Lambert’s problem.

1We remark that the Lambert’s problem is not the rendez-vous problem.

Figure 6.1: The geometry of the Lambert’s problem.
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In a fixed time of flight, there exist only two orbits that connect two nominal positions.
Otherwise, if the duration of the flight is not defined a priori, then we have an infinite
number of possibilities. Let us look to Fig. 6.1. The two vectors r1 and r2, going from
the central body (e.g. Earth) to P1 and P2 respectively, determine the orbital plane
associated with the desired transfer. To well pose the problem, we also need to define
the direction of the transfer, that is, ∆θ. If the two vectors are opposite and collinear,
then ∆θ = π and the orbital plane is not determined. This means that there does not
exist an unique solution. If, instead, ∆θ = k2π with k integer and ∆t = 0, then the
solution is unique and it is a degenerate conic section.

6.1.1 The Lambert’s Theorem

The Lambert’s theorem states that the orbital transfer time depends on:

• the semi-major axis a of the conic section where the two points are located;

• the sum of the distances between the focus of the conic section and the points, i.e.
r1 + r2;

• the length of the chord joining the two points, namely c.

In mathematical jargon: √
µ∆t = f(a, r1 + r2, c), (6.1)

where µ is the mass parameter corresponding to the nominal central body.

6.1.2 Proof

We prove the theorem assuming that there exists an elliptic orbit, of eccentricity e and
semi-major axis a, joining the two points P1 and P2. Let E1 and E2 be the eccentric
anomalies associated with P1 and P2, respectively. Following the Kepler’s equation (see
Eq. (1.76)),√

µ

a3
∆t = E2 − e sinE2 − E1 + e sinE1 = E2 − E1 − e(sinE2 − sinE1). (6.2)

Let us define
E+ :=

E2 + E1

2
, E− :=

E2 − E1

2
,

in such a way that

E1 = E+ − E−,

E2 = E+ + E−,

E2 − E1 = 2E−,

sinE2 − sinE1 = sin (E+ + E−)− sin (E+ − E−) = 2 sinE− cosE+,

cosE2 − cosE1 = = −2 sinE− sinE+,

cosE2 + cosE1 = = 2 cosE− cosE+,
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and hence √
µ∆t = 2

√
a3(E− − e sinE− cosE+). (6.3)

Since we assumed the orbit to be elliptic and thus e < 1, we can introduce a new variable
ψ such that

cosψ = e cosE+,

and (6.3) results in
√
µ∆t = 2

√
a3(E− − sinE− cosψ). (6.4)

Now, from Eqs. (1.61)-(1.62), we have

r = a(1− e cosE),

x = a cosE;

y = a
√

1− e2 sinE,

and thus
r1 + r2 = a(2− e(cosE2 + cosE1)) = 2a(1− cosE− cosψ), (6.5)

and

c2 = (x2 − x1)
2 + (y2 − y1)

2

= a2(cosE2 − cosE1)
2 + a2(1− e2)(sinE2 − sinE1)

2

= 4a2 sin2E−(sin
2E+ + cos2E+ − e2 cos2E+)

= 4a2 sin2E− sin2 ψ. (6.6)

From (6.5) and (6.6), if we define α = ψ + E− and β = ψ − E− it turns out that

r1 + r2 + c = 2a(1− cosE− cosψ + sinE− sinψ) = 2a(1− cosα) = 4a sin2
α

2
, (6.7)

and

r1 + r2 − c = 2a(1− cosE− cosψ − sinE− sinψ) = 2a(1− cosβ) = 4a sin2
β

2
. (6.8)

Since

E− = (α− β)/2,

2 sinE− cosψ = sin (ψ + E−)− sin (ψ − E−) = sinα− sinβ,

Eq. (6.4) becomes
√
µ∆t =

√
a3(α− β − sinα+ sinβ), (6.9)

which proves the theorem. As a matter of fact, from (6.7) and (6.8), we have

sin
α

2
=

√
r1 + r2 + c

4a
, sin

β

2
=

√
r1 + r2 − c

4a
,
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or, if s denotes the semi-perimeter of the triangle FP1P2, namely, s = (r1 + r2 + c)/2,

sin
α

2
=

√
s

2a
, sin

β

2
=

√
s− c

2a
. (6.10)

For the hyperbolic case, it can be proved that (6.9) reads
√
µ∆t =

√
−a3(−α+ β + sinhα− sinhβ), (6.11)

where

sinh
α

2
=

√
− s

2a
, sinh

β

2
=

√
−s− c

2a
. (6.12)

Figure 6.2: The two ellipses of semi-major axis a > am joining P1 and P2.

6.2 Locus of the Vacant Foci

Since the angles α and β are defined through the sine of a square root, we must solve the
ambiguity related to the quadrant they belong to. To this end, let us first understand
where the second focus F ∗ of the ellipse, having semi-major axis a and going through
P1 and P2, can be located. By definition, we have

P1F + P1F
∗ = 2a, P2F + P2F

∗ = 2a, (6.13)
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Figure 6.3: The ellipse of minimum energy of semi-major axis am and the geometry of the
circles with radius 2a − r1 and 2a − r2 for different values of a. In green, the locus of the
vacant foci.

this is,

P1F
∗ = 2a− P1F = 2a− r1, P2F

∗ = 2a− P2F = 2a− r2. (6.14)

In other words, the second focus is at the point of intersection of two circles of radius
2a − r1 and 2a − r2 centered at P1 and P2, respectively (see Fig. 6.2). According to
the value of the semi-major axis, it may happen that there do not exist two intersecting
circles and therefore an ellipse joining the two points. The minimum value for the semi-
major axis required to find the ellipse we are looking for, namely am, is the one associated
with the ellipse of minimum energy. In this case, the two circles of radius 2am − r1 and
2am−r2 are tangent in one point F ∗, which corresponds to the second focus and belongs
to the chord c (see Fig. 6.3). The semi-major axis am is defined as

am =
r1 + r2 + c

4
=
s

2
, (6.15)

and
P1F

∗
m = s− r1, P2F

∗
m = s− r2.

Indeed, from (6.13)

4a = P1F + P1F
∗ + P2F + P2F

∗ = r1 + P1F
∗ + r2 + P2F

∗,
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and the minimum value P1F
∗ + P2F

∗ can take is c. The transfer time, according to
(6.9), (6.10) and (6.15), on the ellipse of minimum energy is

∆tm =

√
s3

8µ
(π − βm + sinβm). (6.16)

For any a > am the corresponding circles intersect in two points, F ∗ and F̃ ∗ equidistant
from and on opposite sides with respect to the chord (see Figs. 6.2 and 6.3). Therefore
there exist two conjugate ellipses with the same semi-major axis a satisfying our con-
straints and 4 elliptic arcs connecting P1 and P2, two such that ∆θ < π and two such
that ∆θ > π. Each one of these arcs is characterized by a different time of flight, because
the two ellipses have different eccentricity, namely,

e =
FF ∗

2a
, ẽ =

FF̃ ∗

2a
. (6.17)

Moreover, from (6.14)
P2F

∗ − P1F
∗ = −(r2 − r1),

which can be recognized as the equation of the hyperbola having semi-major axis

ah =
r2 − r1

2
, (6.18)

and foci P1 and P2. We can conclude that the locus of the vacant foci is a hyperbola of
semi-major axis ah and eccentricity

eh =
c

r2 − r1
. (6.19)

It can be also proved (Battin, 1999) that eh is the reciprocal of the eccentricity, eF =
1/eh, of the fundamental ellipse, which is defined as the ellipse of minimum eccentricity
containing P1 and P2. Such ellipse has the semi-major axis parallel to the chord, and
equal to

aF =
r1 + r2

2
. (6.20)

6.3 Geometrical Interpretation of α and β

From Secs. 6.1.2 and 6.2, we know that for two fixed positions P1 and P2 and semi-major
axis a, the shape of the ellipse connecting them can be changed by moving its foci, on
condition that we do not modify r1 + r2 and the transfer time. In particular, since

P1F + P2F = r1 + r2,

the focus F can move on a ellipse of semi-major axis (r1 + r2)/2 of foci P1 and P2.
Analogously, the focus F ∗ can move on an ellipse of semi-major axis 4a − r1 − r2 con-
focal with the elliptic locus of F (see Fig. 6.4). Because of the way we defined such
transformations, α and β are invariants.
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Figure 6.4: We show where (red and blue curves) the foci can move with the constraint of
fixed a, r1 + r2, c. Left: the case of the vacant focus on the lower branch of the hyperbolic
locus. Right: the one on the upper branch.

The limit case takes place when the two foci are altered up to lie on the line going from
P1 to P2. The orbit linking P1 and P2 becomes a rectilinear ellipse, that is, an ellipse
of eccentricity e = 1 as flat as possible (see also Sec. 1.6.2). In this case the chord c
coincides with the elliptic arc going from P1 to P2 and we have

P2Fr − P1Fr = r2 − r1 = c,

where Fr is one of the foci of the rectilinear ellipse. Also, Eq. (6.2) with e = 1 results in
√
µ∆t =

√
a3(E2 − E1 − sinE2 + sinE1), (6.21)

and since for e = 1 we have

r1 = a(1− cosE1) = 2a sin2
(
E1

2

)
,

r2 = a(1− cosE2) = 2a sin2
(
E2

2

)
,

s =
r1 + r2 + c

2
=
r1 + r1 + c+ c

2
= r1 + c,

s =
r1 + r2 + c

2
=
r2 − c+ r2 + c

2
= r2,

then
r1 = s− c = 2a sin2

(E1

2

)
, r2 = s = 2a sin2

(E2

2

)
. (6.22)

By comparing (6.9) with (6.21) and (6.10) with (6.22), it is clear that α and β can be
seen as the eccentric anomalies in the case of the rectilinear ellipse.
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Figure 6.5: Geometrical interpretation of α and β in relation to the rectilinear ellipse.

Let us refer to Fig. 6.5 and recall the construction of Sec. 1.8. We draw a circle of radius
a and origin at the center of the rectilinear ellipse, namely Or, and two segments, say
P1Q1 and P2Q2 perpendicular to the chord P1P2 and going, respectively, from P1 and
P2 to the circle. The angles α and β are the angles between the chord and the segments
going from Or to Q1 and Q2, respectively.
Since P2Fr = r2 = s and P2Fr + P2F

∗
r = 2a, we have P2F

∗
r = 2a − s. Moreover, since

the radius of the circle is a, we have P2Or = a − 2a + s = s − a. If we construct the
circle centered in Or starting from P2 without using Fr and F ∗

r , then

• if 0 ≤ P2Or ≤ c, then Or belongs to the chord;

• if P2Or < 0 then Or lies exteriorly to P2;

• if P2Or > c, then Or is located exteriorly P1.

Let us consider the following cases.

1. If a = am, then P2 coincides with F ∗
r (see Eq. (6.15)) and, as already noticed,

α = π (see Eq. 6.16).

2. If P2Or = c
2 , that is, the center of the rectilinear ellipse is the midpoint of the

chord, then

s− a = r1 + c− a =
c

2
, =⇒ a = r1 +

c

2
=

2r1 + r2 − r1
2

=
r1 + r2

2
,

which corresponds the semi-major axis associated with the fundamental ellipse (see
(6.20)).
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To conclude, since the known quantities of the problem are r1, r2, c, ∆θ and ∆t, case
1. tells us that the quadrant of the angle α is determined according to whether ∆t is
larger than ∆tm, while case 2. suggests that the quadrant associated with β has to be
chosen according to the position of the vacant focus, which determines the eccentricity
of the orbit as seen before. The difference between the case of the vacant focus along the
lower branch of the hyperbolic locus and the one along the upper branch is in particular
dictated by the angle ∆θ. The interpretation just given derives from Prussing (1979).

6.4 How to Solve the Lambert’s Problem

Now, let us now assume that at the epoch t1 a given spacecraft orbiting at the Earth is
situated at P1 and that it must transfer to P2 in ∆t units of time. For what explained in
Secs. 6.2 and 6.3, if the orbit connecting the two given points in the given time of flight
is an ellipse, then the angles α and β must follow the rule:

β =

{
β0, if 0 ≤ ∆θ < π,
−β0, if π ≤ ∆θ < 2π.

α =

{
α0, if ∆t ≤ ∆tm,
2π − α0, if ∆t > ∆tm,

where α0 and β0 are the principle values of the inverse sine functions used to solve
(6.10). The corresponding cases are showed in Fig. 6.6. Actually, it can be proved
that the condition on β holds also in the parabolic and hyperbolic cases (Prussing, 1979;
Battin, 1999).
But still, we do not know what kind of conic section fulfills our constraints. To this end,
we must solve Eq. (6.9) in terms of the semi-major axis a. This can be done only by
means of iterative methods, e.g. the Newton’s method introduced in Sec. 1.8.3, because
the equation contains transcendental terms. Let us consider the parabolic case, letting
a tend to infinity in (6.9) and (6.10) and assuming 0 ≤ ∆θ < π, namely,

lim
a→∞

sin
α

2
= lim

a→∞

√
s

2a
= 0 =⇒ α

2
≈ sin

α

2
=

√
s

2a
=⇒ α ≈ 2

√
s

2a
,

lim
a→∞

sin
β

2
= lim

a→∞

√
s− c

2a
= 0 =⇒ β

2
≈ sin

β

2
=

√
s− c

2a
=⇒ β ≈ 2

√
s− c

2a
.

Also,

α− sinα ≈ α−
(
α− α3

3!

)
=
α3

6
≈ 4s3/2

3(2a)3/2
,

β − sinβ ≈ β3

6
≈ 4(s− c)3/2

3(2a)3/2
,
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Figure 6.6: The different cases that can occur in the Lambert’s problem if the connecting
orbit is an ellipse.
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In this way the transcendental functions cancel out and we obtain

∆tp =

√
2

3
√
µ

(
s3/2 − (s− c)3/2

)
. (6.23)

If, instead, π ≤ ∆θ < 2π, then β < 0 and

∆tp =

√
2

3
√
µ

(
s3/2 + (s− c)3/2

)
. (6.24)

The two equations (6.23) and (6.24) can be summarized in

∆tp =

√
2

3
√
µ

(
s3/2 − sign(∆θ)(s− c)3/2

)
=

=
1

6
√
µ

[
(r1 + r2 + c)3/2 − sign(∆θ) (r1 + r2 − c)3/2

]
, (6.25)

which tells us that in the parabolic case, the time of flight does not depend on the semi-
major axis. It can be proved (Battin, 1999) that Eq. (6.25) corresponds to the Barker’s
equation (1.59) introduced in Sec. 1.7.3.
One of the possible procedures to solve the Lambert’s equation is thus the following:

1. the quadrant of β is determined by ∆θ;

2. compute ∆tp;

3. if ∆t < ∆tp, then the conic section we are looking for is a hyperbola;

4. if ∆tp < ∆t < ∆tm, then the arc connecting P1 to P2 is short-way elliptic, then
α = α0;

5. if ∆t > ∆tm, then the arc is long-way elliptic, then α = 2π − α0;

6. with these input data find the zero of either

g(a) =
√
a3(α− β − sinα+ sinβ)−√

µ∆t,

if the orbit is an ellipse, or

gh(a) =
√

−a3(−α+ β + sinhα− sinhβ)−√
µ∆t,

if the orbit is a hyperbola. In the latter case, α = α0 always.

In the case of elliptic transfers, once computed a, the eccentricity e of the conic section
can be recovered from (1.117) and (1.119). In particular,

1− r2
p
(1− cos∆θ) = 1− a

r1
(1− cos∆E),
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where ∆E ≡ 2E− = α− β, while ∆θ, r1 and r2 are known. If follows

p =
r1r2
a

1− cos∆θ

1− cos∆E
,

and then

e =

√
1− p

a
.

At this point, it should be clear that the geometrical derivation of Gauss in terms of the
area of the triangle and the sector defined by r1 and r2 (see Secs. ?? and ??) was a first
attempt to find a solution to the Lambert’s problem.
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