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Sistemidi Guidae Navigazione

PART  I

Guidance Systems
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Navigation

ÅNavigation Problem

ÅInertial Navigation Schemes

ÅGyroscopes and Accelerometers

ÅReference Systems and Models

ÅNavigation Equation and Error Sources

ÅNon-Inertial navigation systems

ÅGlobal Positioning System

ÅIntegrated INS-GPS System

ÅExamples and Applications

what is my current position?
where am I travelling to?
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Guidance

ωGuidance as closed loop system
ωGuidance Classification

ωProportional Navigation (PNG)
ωOtherGuidanceSchemes
ωWaypointGuidance
ωNoiseand Uncertainties
ωExamplesand Applications

ωhow we go from one point to another
ωHow precisely we reach the target point
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Basic Definitions

Å Guidance

Å is the action or the system that continuously computes the 
reference (desired) position, velocity and acceleration of a 
vehicle to be used by the control system. 

Å The guidance system may be implemented in an open loop or 
closed loop form.

Å Its objective is to implement a law that maintains a specific path 
and/or reach one or more targets.

Å Early guidance methods were studied in Germany during the 
end of WWII.

Å One of the most challenging applications, that led to advances in 
guidance, was the Apollo program.

Å In recent years, guidance became more closely connected with 
intercept and rendezvous problems, and the tools used for this 
were taken more and more from control theory.
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Guidance as Closed Loop System

Å Feature of guidance:

Å is the tight 
association with the 
autopilot and the 
inner control loop. 

Å the guidance process is 
primarily a kinematic 
process
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Guidance as Closed Loop System

Å The first block includes the complete 
dynamic model of the vehicle, actuators, 
external disturbances, and flight control 
system (inclusive of autopilot). 

Å The resulting command, from a guidance 
stand point, is the acceleration, Amy. 

Å This loop, as we can see from the input 
going into the flight control system, is 
responsible for disturbance rejection, 
rotational motion control, and 
translational motion control in the 
ŘƛǊŜŎǘƛƻƴ ƻŦ ǘƘŜ ǾŜƘƛŎƭŜΩǎ ŀŎŎŜƭŜǊŀǘƛƻƴ 
vector.
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Guidance as Closed Loop System

Å The block describes of the relative motion of the two systems.  The target dynamics may be 
known or unknown, and the output of this process is relate to the relative instantaneous 
distance between the two, indicated by the term 1/R.
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Guidance as Closed Loop System

Å The left block shows how the information relative to distance and direction is measured by 
ǘƘŜ ǾŜƘƛŎƭŜ όǘƘǊƻǳƎƘ ŀ ŎƻƳǇƻƴŜƴǘ ŎŀƭƭŜŘ άǎŜŜƪŜǊέύΣ ǇǊƻŎŜǎǎŜŘ ǿƛǘƘ ƴƻƛǎŜ ƳƻŘŜƭǎ ōŀǎŜŘ ƻƴ 
the component, target, and environment knowledge, and finally sent to the guidance 
process.

Å The actual guidance system is shown on the right, from a process point of view, meaning that 
guidance method and structure are not detailed.  
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Guidance as Closed Loop System

Å For a ship or an underwater vehicle, the 
guidance and control system usually 
consists of:

Å an attitude control system

Å a path control system

Å In its simplest form the attitude control 
system is a course autopilot. 

Å The task of the path controller is to keep 
the vessel on the predefined path with 
some predefined dynamics (e.g. forward 
speed) by generating orders to the 
attitude control system. 



Lorenzo Pollini ςSistemi di Guida e Navigazione ς[a LƴƎŜƎƴŜǊƛŀ wƻōƻǘƛŎŀ Ŝ ŘŜƭƭΩ!ǳǘƻƳŀȊƛƻƴŜ ςUniv. di Pisa 11

Guidance Classification

Å Many different ways of classification

Å Guidance in terms of Phases of Motion

Å Guidance in terms of Process

Å Guidance in terms of Methodology
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GuidanceClassification(Phasesof Motion)

Launcher clearance

Initial acceleration

Deployment of flight surfaces

Inertial navigation initialization

Alignment Error

é

Cruise course/speed

Closure on the target

FCS & Navigation System corrections

Onboard Sensors

External Tracking

é Target sensing

Vehicle performance 

Violent, high G-force maneuvers

Target Intercept
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GuidanceClassificationExample
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GuidanceClassificationExample

Integrated GNC System Requirements
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GuidanceClassificationExample
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GuidanceClassificationExample

Ascent GNC Overview Diagram
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GuidanceClassificationExample

Guidance & Control Steering Interface
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GuidanceClassification(Phasesof Motion)

The three phases of flight can be also identified in a completely different 
mission.  Let us consider the mission of traveling to Mars  (courtesy of NASA -

JPL).  It is obviously a complex mission with different engineering areas of 
interest.
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GuidanceClassification(Phasesof Motion)

Mission Timeline
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GuidanceClassification(Phasesof Motion)

The initial phase starts with the launch
 and all preset operations to reach
 Earth orbit.  Based on the current

 astronomical configuration of Earth, 
Sun and Mars, and the timing of arrival,
 the launch is set, the rocket rolls to the

 Earth orbit osculating plane and ends
 its operation, once reached a given 

altitude and velocity capable of
 inserting the spacecraft in a 

parking orbit.  

The guidance system in this phase
is essentially coincident with the 
trajectory control system of the

launcher.
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GuidanceClassification(Phasesof Motion)

The mid-course phase consists of three parts.

ÅThe first is the departure from Earthôs gravity field, 

Åthe second is the insertion into the transfer trajectory to Mars

Åthe third is the deceleration into Mars orbit.  

Method of patched-conics, which connects segments of Keplerian orbits.  

ÅThe guidance system is strongly connected to the navigation system. 

ÅThe implementation of guidance commands is usually pre-set.
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GuidanceClassification(Phasesof Motion)

Earth departure is obtained by performing a velocity change, which puts the spacecraft from the parking orbit 

into a hyperbolic escape trajectory.  Then another impulsive change is required to enter the transfer orbit 

about the Sun (Hohmann transfer).  Mars approach can be achieved in different ways, always via impulsive 

decelerations.

-DV
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GuidanceClassification(Phasesof Motion)
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GuidanceClassification(Phasesof Motion)
EXAMPLE: anti-missile defense
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GuidanceClassification(Process)

Preset Guidance 

All information is stored on the 

vehicle at launch. Target information 
is not updated

Direct Guidance 

Information about the target is 

received at launch, as well as 

during the flight.
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GuidanceClassification(Process)

Command Guidance

Å the guidance of a vehicle by means of electronic commands generated outside.  

Å The basic element is the relative position and velocity of vehicle-target

Å Uplink the information so that intercept at some position is achieved.

Å The information can be given to the vehicle in various ways (radar station, radio 

 frequency, laser beam, uncoiled wire, etc.).

Å The main advantage of this solution is that there is no need of on-board seeker 

Å The main limitation is the influence of noise on the data transmission to the vehicle.  

CLOS Command to Line of Sight 

Å The line-of-sight information is in some way given to the vehicle, thus improving the 

 capability of intercept. 

Å If the vehicle can maintain the straight line between tracker and target (LOS), it will intercept.

Å The input to the guidance algorithm is therefore the relative error vector and its rate

 producing an appropriate compensating acceleration.

Å This can be obtained by applied different control methods, from classical control, 

 to optimal control, from feedback linearization, to neural and fuzzy systems.
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Guidance Classification (Process)

Vehicle

Info 

uplink

Target

Command Guidance
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Guidance Classification (Process)

Beam-Rider Guidance

ÅThree-point guidance where the guidance algorithm maintains the vehicle inside 

          a beam directed to the target.  The beam is usually either radar or laser generated.

Beam Rider Guidance



Lorenzo Pollini ςSistemi di Guida e Navigazione ς[a LƴƎŜƎƴŜǊƛŀ wƻōƻǘƛŎŀ Ŝ ŘŜƭƭΩ!ǳǘƻƳŀȊƛƻƴŜ ςUniv. di Pisa 29

GuidanceClassification(Process)

Homing Guidance
Å Applied to the terminal phase of the guidance trajectory. The vehicle is guided by information

 coming directly from the target, 

Active homing:  the vehicle has a transmitter and a receiver and ñilluminatesò 

    the target, thus obtaining information about its position 

    and velocity.

Semi-active homing: the ñilluminationò comes from a source outside the vehicle.

Passive homing:  the target itself is known due to some special radiating 

    information that is unique to the target itself (heat, 

    electromagnetic waves, etc.).  

In all three cases, however,

the vehicle must have a seeker 

Homing 
Guidance
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GuidanceClassification(Process)

Active homing:  the vehicle has a transmitter and a receiver and ñilluminatesò 

    the target, thus obtaining information about its position 

    and velocity.

Semi-active homing: the ñilluminationò comes from a source outside the vehicle.

Passive homing:  the target itself is known due to some special radiating 

    information that is unique to the target itself (heat, 

    electromagnetic waves, etc.).  
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GuidanceClassification(Methodology)

ÅIn order to intercept a target or to reach a specified point precisely, the vehicle must 
 constantly travel in the appropriate direction

 
ÅAchieved by a guidance law built into the global guidance processor

 
ÅThe synthesis of a guidance law is obtained using different control methods
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GuidanceClassification(Methodology)

Although similar in principle (LOS information is crucial to the success of the 
guidance), there are differences with respect to a particular aspect of intercept: 
the capability of achieving intercept in the presence of a maneuverable target 

and/or a target having speed higher than that of the vehicle.  

The main purpose of the guidance law is to provide an
appropriate commanded acceleration history, which will

guarantee intercept.
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GuidanceClassification(Methodology)

Typical Intercept scenario
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Pursuit Guidance (LOS guidance)

Å The first implemented historically.  

Å It resembles the classical hound-hare course.  

Å The vehicle aims directly at the target during the entire engagement.

Å Suitable for stationary and slowly moving targets

Å Simple HW implementation

It permits a simple implementation

Less sensitive to noise, pursuit guidance is 

Impractical against highly moving targets, 

resulting in energy consuming tail chase.  

This is NOT the case for instance for ships 

and underwater vehicles, where the speed 

advantage is much greater.

V

T

GuidanceClassification(Methodology)
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V

T

T

Constant Bearing Guidance (LOS guidance)

A less demanding course is the one that predicts the target path and aims the 

vehicle to the predicted intercept point.  

This works well if the predictor scheme is accurate, and the autopilot is  commanded to 

keep the direction (LOS) to the target constant. 

GuidanceClassification(Methodology)
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V

T

Proportional Navigation Guidance (LOS rate guidance) 

Is a derivation of constant bearing guidance, and it will be studied in detail.  

The basic concept is to make the vehicleôs heading rate proportional to the LOS 

rate from vehicle to target.

When the LOS rate nulls, the vehicle is supposed to reach interception!

= Ö ÖsLAT ca N V

GuidanceClassification(Methodology)
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Advanced Guidance 

Identifies all new developments in the 

field of homing guidance.  

The problem is generalized to include 

prediction, and optimality is taken 

into account  in many possible ways.

Å Calculus of variations, 

Å Optimization, 

Å Constrained nonlinear optimization

Å On-off control, 

Å Differential games, 

Å Fuzzy logic, neural networks

Å Robust multivariable control methods,

Å Feedback linearization

GuidanceClassification(Methodology)
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Collision Triangle

R<0

On a Collision Triangle, the distance vector R(t)= Pm(t)-Pt (t) always decreases:

Given a pursuer and an evader, with known:

Å Initial positions Pm and Pt 

Å Initial velocities (vectors) Vm and Vt 

that do not accelerate

the two lay on a collision triangle if:

Å A time tf exists so that 

Å Pm (tf ) = Pt (tf )

On a Collision Triangle, the LOS angle (angle between LOS vector and an inertial reference)

is constant:

s=0

Pm Pt
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Collision Triangle

Pm

= + - Ý = + = +m m m m m m t t tP (t ) P (t ) V (t t ) P (t ) P ( ) V t,P (t ) P ( ) V t,0 0 0 0

Compute position of single vehicle over time: 

Given a pursuer and an evader, with known:

Å Initial positions Pm and Pt 

Å Initial velocities (vectors) Vm and Vt 

that do not accelerate

the two lay on a collision triangle if:

Å A time tf exists so that 

Å Pm (tf ) = Pt (tf )

If a collision will happen at an unknown tf, then: 

= Ý + = +m f t f m m f t t fP (t ) P (t ) P ( ) V t P ( ) V t ,0 0

Pt
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Collision Triangle

Solve for Vm to find the necessary missile velocity (as if tf, was known): 

Given a pursuer and an evader, with known:

Å Initial positions Pm and Pt 

Å Initial velocities (vectors) Vm and Vt 

that do not accelerate

the two lay on a collision triangle if:

Å A time tf exists so that 

Å Pm (tf ) = Pt (tf )

Thus at a generic time t: 

+ -
= t t f m

m

f

P ( ) V t P ( )
V

t

0 0

= +

+ -
= +

t t t

t t f m
m m

f

P (t ) P ( ) V t

P ( ) V t P ( )
P (t ) P ( ) t

t

0

0 0
0

Pm Pt
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Collision Triangle

Now compute the distance vector, or range vector, between the two vehicles:

Given a pursuer and an evader, with known:

Å Initial positions Pm and Pt 

Å Initial velocities (vectors) Vm and Vt 

that do not accelerate

the two lay on a collision triangle if:

Å A time tf exists so that 

Å Pm (tf ) = Pt (tf )

+ -
= - = + - -t t f m

t m t t m

f

P ( ) V t P ( )
R(t ) P (t ) P (t ) P ( ) V t P ( ) t

t

0 0
0 0

[ ]
å õ-

= - - = - -æ ö
ç ÷

t m
t m t m

f f

P ( ) P ( ) t
R(t ) P ( ) P ( ) t P ( ) P ( )

t t

0 0
0 0 0 0 1

Pm Pt
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Collision Triangle

Letôsanalyze this result:

R(t) on a collision triangle is R(t0) at t0 and is 0 at t= tf => interception guaranteed by construction

R(t) is always decreasing, that is 

Given a pursuer and an evader, with known:

Å Initial positions Pm and Pt 

Å Initial velocities (vectors) Vm and Vt 

that do not accelerate

the two lay on a collision triangle if:

Å A time tf exists so that 

Å Pm (tf ) = Pt (tf )

[ ]
å õ å õ

= - - = -æ ö æ ö
ç ÷ ç ÷

t m

f f

t t
R(t ) P ( ) P ( ) R(t )

t t
00 0 1 1

Pm Pt

R<0
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Collision Triangle

and by substitution of the Range expresssion:

Given a pursuer and an evader, with known:

Å Initial positions Pm and Pt 

Å Initial velocities (vectors) Vm and Vt 

that do not accelerate

the two lay on a collision triangle if:

Å A time tf exists so that 

Å Pm (tf ) = Pt (tf )

å õ
s = æ ö

ç ÷

Y

X

R (t )
( t ) a tan

R (t )

Define the LOS angle as the angle between LOS vector and an inertial reference. Thus:

s
X

Y

å õå õ
-æ öæ ö

ç ÷æ ös =
æ öå õ

-æ öæ öæ ö
ç ÷ç ÷

Y

f

X

f

t
R (t )

t
( t ) a tan

t
R (t )

t

0

0

1

1
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Collision Triangle

This Implies that: 

Given a pursuer and an evader, with known:

Å Initial positions Pm and Pt 

Å Initial velocities (vectors) Vm and Vt 

that do not accelerate

the two lay on a collision triangle if:

Å A time tf exists so that 

Å Pm (tf ) = Pt (tf )

Now the expression can be simplified as:

å õå õ
-æ öæ ö

å õç ÷æ ös = = =æ öæ öå õ ç ÷-æ öæ öæ ö
ç ÷ç ÷

Y

f Y

X

X

f

t
R (t )

t R (t )
( t ) a tan atan Cost

R (t )t
R (t )

t

0

0

0

0

1

1

s=0

s
X

Y
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Collision Triangle

Given a pursuer and an evader, with known:

Å Initial positions Pm and Pt 

Å Initial velocities (vectors) Vm and Vt 

that do not accelerate

the two lay on a collision triangle if:

Å A time tf exists so that 

Å Pm (tf ) = Pt (tf )

Means that: 

Å The LOS vector is always parallel to itself during the 

flight

Å If LOS rate is controlled to 0, then the vehicles are on 

a collision triangle.

s X

Y

s=0
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Proportional Navigation Guidance

ÅPNG or ProNav
ÅThe basic principle for all types of PNG is control of  direction of the 
ǾŜƘƛŎƭŜΩǎ ǾŜƭƻŎƛǘȅΣ ǿƛǘƘ ŀ ǎǇŜŜŘ ǇǊƻǇƻǊǘƛƻƴŀƭ ǘƻ ǘƘŜ [h{ ǊŀǘŜΦ

ÅThe principle was known and used by pirates in order to achieve 
collision course with merchant ships starting from 1600.  

ÅMore recently, the method was studied by Germany at the end of WW 
II, and by the USA in the same period. 

ÅDue to its physical simplicity, the method was implemented in the 
ŜŀǊƭȅ ΩрлΣ ŀƴŘ ŦƛǊǎǘ ǇǳōƭƛǎƘŜŘ ƛƴ мфпу ƛƴ ǘƘŜ WƻǳǊƴŀƭ ƻŦ !ǇǇƭƛŜŘ tƘȅǎƛŎǎΦ  

ÅaŀǘƘŜƳŀǘƛŎŀƭ ŘŜǊƛǾŀǘƛƻƴ ƻŦ ƛǘǎ άƻǇǘƛƳŀƭƛǘȅέ ǳƴŘŜǊ ŎŜǊǘŀƛƴ ŎƻƴŘƛǘƛƻƴǎ 
followed only 20 years later with the work by Arthur Bryson.

ÅPNG gives the possibility of defining the acceleration command to 
give the vehicle for intercept.  While the magnitude of the 
acceleration is common to most of the variants and proportional to 
LOS rate, the commanded acceleration direction changes according to 
different solutions.  
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PNG Variants

ω Pure PNG has the acceleration command normal to the velocity of the vehicle
ω True PNG has the direction normal to the LOS
ω In modified True PNG, the acceleration direction is still normal to the LOS,
 but the magnitude is proportional to the product between LOS rate and
 closing speed (relative speed)
ω Generalized True PNG has the direction of the acceleration at a specified 
 angle with respect to the LOS.
ω Ideal PNG has the direction of the acceleration normal to the closing speed
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PNG Variants

Common to all PNGs :

Acceleration is normal to a certain vector L and proportional to 
LOS rate w vector

2-D relative engagement scenario 
described in polar coordinates

Initial Closing Velocity

Interceptor velocity

Actual Closing Velocity

Constant correction

Closing Vel. vector

A Unified Approach to Proportional Navigation, C.Yang, C. Yang, IEEE TAES VOL. 33, NO. 2 APRIL 1997
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PNG ς2D Intercept Scenario

g -s= +m eL H

L = ñlead angleò: theoretical value for a 

collision course (no further acceleration 

commands are required for intercept). 

He is known as heading error, 

or the initial deviation from the 

collision triangle.

s
Vm

gm

Am

Vt

gtAt

R

X

Z
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PNG ς2D Intercept Scenario

s
Vm

gm

Am

Vt
gtAt

R

X

Z

( )

( )

ë = gî
ì

= gîí

m m m

m m m

X V cos

Z V sin

Step 1 ï Write Cartesian velocities in polar form

()

()

ë = gî
ì
= gîí

t t t

t t t

X V cos

Z V sin

( )

( )

ë =- gî
ì

= gîí

m m m

m m m

X A sin

Z A cos

Step 2 ï Write Cartesian accelerations in polar form

(acceleration is orthogonal to velocity by construction)

()

()

ë =- gî
ì
= gîí

t t t

t t t

X A sin

Z A cos

( ) ( )ë = - + -
îî
ì å õ-
s=î æ ö

-î ç ÷í

t m t m

t m

t m

R X X Z Z

Z Z
arctan

X X

2 2

Step 4 ï Write Range R and LOS angle

Step 3 ï Write flight path angles

ë å õ
g =î æ ö

ç ÷î
ì

å õî
g = æ öî

ç ÷í

m
m

m

t
t

t

Z
arctan

X

Z
arctan

X



Lorenzo Pollini ςSistemi di Guida e Navigazione ς[a LƴƎŜƎƴŜǊƛŀ wƻōƻǘƛŎŀ Ŝ ŘŜƭƭΩ!ǳǘƻƳŀȊƛƻƴŜ ςUniv. di Pisa 54

PNG ς2D Intercept Scenario

s
Vm

gm

Am

Vt
gtAt

R

X

Z Step 5 ï Derive flight path angles

ë å õ
g = = =î æ ö
î ç ÷
ì
îg =
î
í

m m
m

mm

t
t

t

Z Ad
arctan ...

dt VX

A

V

Step 6 ï Derive LOS angle

( )( )( )( )- - - - -å õ-
s= = =æ ö

-ç ÷

t m t m t m t mt m

t m

Z Z X X X X Z ZZ Zd
arctan ...

dt X X R2

Step 7 ï Derive R to obtain Closing Velocity Vc


