Our research interests cover several aspects of the coordination chemistry of transition metal compounds.

  • Functionalized bio-organometallic diiron complexes.

Diiron complexes have emerged as interesting scaffolds for the design and the development of new synthetic pathways, due to their capability of mimicking biological systems, the advantages related to the use of a nontoxic and cost-effective metal element, and the cooperativity provided by the two adjacent metal centers (two hands work better than one!). We have developed versatile and air/water stable diiron systems, and some of these complexes exhibit a promising cytotoxic activity. We are currently exploring different strategies to modify the key bridging ligand in order to modulate the behaviour of the compounds in the biological environment.

Selected References:

Chem. Eur. J. 2019, 25, 14801-14816

Eur. J. Inorg. Chem. 2018, 3987-4003 (review)

Organometallics 2020, 39, 645-657

  • Anticancer transition metal complexes with bioactive fragments.

There are intense research efforts to develop new and efficient metal-based anticancer agents, able to overcome the limitations associated with the platinum drugs currently employed in chemotherapy. Based on the idea that the incorporation of organic fragments with documented biological functions may improve the drug efficacy, we have been involved with the synthesis and the evaluation of the anticancer activity of new transition metal complexes containing bioactive fragments, linked to the metal centre through suitable ligands.

Selected References:

Inorg. Chem. 2018, 57, 6669−6685

Dalton Trans. 2017, 46 , 12001–12004

  • Sustainable organic synthesis via CO2 fixation.

Carbon dioxide is an abundant, cheap, nontoxic and therefore appealing C1 building block for synthetic chemistry. In general, we are interested in developing new environmentally friendly synthetic routes to valuable chemicals, using CO2 as a reagent under mild conditions. The feasible incorporation of CO2 into carbamates, (O2CNR2), allows the straightforward access to a variety of compounds of general formula [M(O2CNR2)n] (M = non transition or transition element). The catalytic behaviour of metal carbamates of non toxic metals in CO2 fixation reactions is currently under investigation.

Selected References:

ChemSusChem 2020, DOI 10.1002/cssc.202001823

Molecules 2020, 25, 3603

ChemSusChem 2018, 11, 2737-2743

  • Activation of small molecules and stabilization of reactive organic cations by early transition metal halides.

We have contributed to the progress in the chemistry of halides of high valent metals of groups 5 and 6, with which organic compounds may undergo unusual activation pathways. Also, halo-metalato species are able to stabilize otherwise reactive organic cations (including the case of the benzene radical cation, stabilized at room temperature in a common organic solvent).

Selected References:

Chem. Commun. 2012, 48 , 635–653 [Feature Article]

Angew. Chem. Int. Ed. 2010, 49, 5268-5272

Chem. Commun. 2017, 53, 364-367

Past scientific collaborations (in alphabetical order):

Marco Bortoluzzi (University Cà Foscari of Venezia)

Sebastiano Campagna, Fausto Puntoriero (University of Messina)

Cinzia Chiappe (University of Pisa)

Federica Chiellini (University of Pisa)

Gianluca Ciancaleoni (University of Pisa)

Marcello Crucianelli (University of L’Aquila)

Paul J. Dyson (École Polytechnique Fédérale de Lausanne)

Claudio Evangelisti (CNR of Milano)

Nicola Ferri (University of Padova)

Tiziana Funaioli (University of Pisa)

Chiara Gabbiani (University of Pisa)

Begoña Garcia Ruiz (University of Burgos)

Fabio Piccinelli (University of Verona)

Francesco Pineider (University of Pisa)

Calogero Pinzino (ICCOM-CNR of Pisa)

Anna Maria Raspolli Galletti (University of Pisa)

Maria Lúcia Sousa Saraiva (University of Porto)

Timo Repo (University of Helsinki)

James Wilton-Ely (Imperial College, London)

Stefano Zacchini (University of Bologna)

Valerio Zanotti (University of Bologna)