Optimal notched specimen parameters for accurate fatigue critical distance determination

C. Santus
Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy

D. Taylor
Department of Mechanical & Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland

M. Benedetti
Department of Industrial Engineering, University of Trento, Trento, Italy
The theory of critical distance (TCD)

- \(L \) is very sensitive to material characteristics (microstructure, texture, processing routes)
- Crack growth threshold determination through fracture mechanics tests is experimentally challenging

El-Haddad material length

\[L = \left(\frac{K_{th}}{f_l} \right)^2 \]
Introduction

Motivation

• Design of an optimal notched specimen geometry for accurate L determination to circumvent the fracture mechanics test

• Provide a straightforward analytical calculation of L to avoid the FE analysis of each specimen geometry

• Define an effective range where the result is expected to be not largely sensitive to any experimental issue

Outline

• Stress distribution ahead of notches

• Critical distance determination: LM vs. PM

• Sensitivity analysis

• Experiments

• Critical distance evaluation

• Fatigue strength evaluation
Proposed specimen

- V-notch axisymmetric specimen: easy to manufacture, no boundary effects, no transition from plane stress to plane strain
- Relatively open angle: 90°, 60°
- Sharp root radius

Dimensions to be defined:
- Bar diameter D
- Notch depth A
- Notch angle α
- Notch radius R
Stress analysis, (i) sharp notch assumption

Singular stress field

\[\sigma_y(x) = \frac{K_N}{x^s} \]

Singularity exponent, \(s \)

Williams’ exponent close to \(\frac{1}{2} \) even for relatively large notch angles

Recommended angles

<table>
<thead>
<tr>
<th>Notch angle, (\alpha) (°)</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Williams’ exponent</td>
<td>0.487779</td>
<td>0.455516</td>
</tr>
</tbody>
</table>
Stress analysis, (i) sharp notch assumption

Singular stress field

Dimensionless form:

$$y(x) = \frac{K_N}{x^s} = \frac{K_{N,U}}{x^s} = \frac{K_{N,U}/(D/2)^s}{(x/(D/2))^s}$$

where:

$$x = \frac{x}{D/2}$$

$$K_{N,UU} = \frac{K_{N,U}}{(D/2)^s} = \frac{K_N}{(D/2)^s}$$

N-SIF for unitary half diameter and unitary nominal stress

- At intermediate notch depth $a = 0.3$ the NSIF is maximum because at a lower depth the notch indentation is just too small, while for the higher depth the peak stress points along the inner ring are too close.
LM critical distance inverse search

Line Method dimensionless form:

\[
\frac{1}{2L} \int_0^{2L} y(x) \, dx = \frac{1}{2l} \int_0^{2l} y(\) \, dx
\]

where: \(l = L(D / 2) \)

Singular term integration:

\[
\frac{1}{2l} \int_0^{2l} y(\) \, dx = \int_0^{2l} \frac{K_{N,UU}}{s} \, dx = \frac{N}{1} \frac{K_{N,UU}}{s} (2l)^s
\]

Line Method, average stress equal to fatigue limit:

\[
\frac{N}{1} \frac{K_{N,UU}}{s} (2l)^s = \text{fat}
\]

Fatigue stress concentration factor:

\[
\frac{1}{s} \frac{K_{N,UU}}{(2l)^s} = K_f
\]

Critical distance length inverse derivation:

\[
l_0 = \frac{1}{2} \left(\frac{K_{N,UU}}{s} (1/s) K_f \right)^{1/s}, \quad L_0 = l_0 (D / 2)
\]
Stress analysis, (i) sharp notch assumption

LM/PM critical distance inverse search

Line Method length inverse derivation:

\[
L_0 = \frac{D}{4} \left(\frac{K_{N,UU}}{(1 - s)K_f} \right)^{1/s}
\]

Similar analysis for the Point Method, length inverse derivation:

\[
L'_0 = D \left(\frac{K_{N,UU}}{K_f} \right)^{1/s}
\]

"0" stands for singularity derived and ' is for the PM

Notch parameters:

\[
\begin{align*}
\alpha &= 90^\circ \\
&\quad s = 0.455516 \quad K_{N,UU} = 0.3210 \quad (a = 0.3) \\
\alpha &= 60^\circ \\
&\quad s = 0.487779 \quad K_{N,UU} = 0.2866 \quad (a = 0.3)
\end{align*}
\]
Stress analysis, (ii) rounded notch tip

Bounded stress field

- **Rounded notch maximum stress**
- **Dimensionless radius:**
 \[r = \frac{R}{D/2} \]
 \[\rho = \frac{R}{A} = \frac{r}{a} \]

- **Performed simulations:**
 \[a = 0.3, \]
 \[= \frac{R}{A} \]
 \[= 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0 \]

- FE model with unitary half diameter and unitary stress
 - Path discretization: point-to-point dist. = \(1 \times 10^{-5} \)
 - Notch tip element size = \(8.7 \times 10^{-5} \)
Stress analysis, (ii) rounded notch tip

LM critical distance inverse search

Line Method dimensionless form:

\[
\frac{1}{2l} \int_0^{2l} \Delta \sigma_y(\xi) \, d\xi = \Delta \sigma_N \frac{f(l) \, K_{N,UU}}{1 - s \, (2l)^s}
\]

where \(f(l)\) is a correction function

Line Method equation:

\[
\frac{f(l) \, K_{N,UU}}{1 - s \, (2l)^s} = K_f
\]

After introducing \(l_0\):

\[
\frac{l}{f(l)^{1/s}} = l_0
\]

and the inversion function is defined: \(\gamma(l) = l / f(l)^{1/s}\)

to put the inverse search problem as:

\[
\gamma(l) = l_0
\]
Stress analysis, (ii) rounded notch tip

LM critical distance inverse search

Very accurate approx. with a linear model, inverse search:

\[l = l_{\text{min}} + \frac{l_0 - \gamma_{\text{min}}}{\beta} \]

\[\beta = \frac{\gamma_{\text{max}} - \gamma_{\text{min}}}{l_{\text{max}} - l_{\text{min}}} \]

Fit models (\(\rho \) functions):

\[l_{\text{min}} = p_1 \rho^3 + p_2 \rho^2 + p_3 \rho + p_4 \]

\[\gamma_{\text{min}} = q_1 \rho^3 + q_2 \rho^2 + q_3 \rho + q_4 \]

\[l_{\text{max}} = \gamma_{\text{max}} = c_1 + c_2 \rho^{c_3} \]
Stress analysis, (ii) rounded notch tip

PM critical distance inverse search

- **Inversion function:**
 \[\gamma'(l) = \delta_1 l_0^4 + \delta_2 l_0^3 + \delta_3 l_0^2 + \delta_4 l_0 + \delta_5 \]

- **Dimensionless critical distance (PM),** \(l' \)

- **Notch radius ratio,** \(\rho \)

- **PCHIP at higher resolution of \(\rho \)**

- **Coefficient at reference values**

- **Tabular data for \(\delta_i (\rho \text{ functions}) \)**
Inaccurate inverse search configurations

Sensitivity to any experimental variation of K_f

Sensitivity definition:

$$S = -\frac{1}{L} \frac{dL}{dK_f}$$

Small critical distance wrt notch radius

Not sharp enough local radius

Minimum sensitivity in the range $0.5 < f(l) < 1.0$

Large critical distance wrt diameter size

Small specimen size
Accurate inverse search range

Maximum/minimum limits for the dimensionless critical distance

\[\frac{\Delta \sigma_{av}(l)}{\Delta \sigma_N} = \frac{1}{1 - s} \frac{K_{N,UU}}{(2l)^s} \]

\[0.5 \frac{K_{N,UU}}{1 - s} \]

Small critical distance / Minimum limit

Large critical distance / Maximum limit

FE integration

Theoretical integr.

\(f(l) = 0.5 \)

Minimum limit

Maximum limit
Experimental application, 42CrMo4 - $S_U = 875$ MPa

Specimen extraction from the same bar supply

Fracture mechanics tests for comparison

Expected Critical Distance on the order of 0.05 mm, small notch radius 0.2 mm

Sharp notch:
$R = 0.2$ mm
$\rho = 0.0667$

Detail view

Blunt notch (other spec.):
$R = 1.0$ mm
$\rho = 0.333$
Experimental test results, S-N data

Specimen types: Plain, Blunt (1.0 mm), Sharp (0.2 mm)

Push-pull (R=-1) axial fatigue tests

Pulsating (R=0.1) axial fatigue tests

Stress amplitude, σ_a (MPa)

Number of cycles to failure, N_f
Experimental test results, thresholds

M(T) specimen for negative load ratio

- Stress intensity factor range, ΔK (MPa m$^{0.5}$)
 - $\Delta K_{th} = 7.2$ MPa m$^{0.5}$
 - $\Delta K_{th} = 9.1$ MPa m$^{0.5}$

- Crack growth rate, da/dN (m/cycle)

- Q+T steel, air, RT, 100 Hz

- Exp. Klesnil-Lukas
- $R = 0.1$
- $R = -1$

Graph showing crack growth rate vs. stress intensity factor range.
Experimental test results, length comparison

LM and PM dimensionless critical distances, $l - l'$

<table>
<thead>
<tr>
<th>R = -1</th>
<th>Plain - ΔK_{th}, $L_{-1} = 0.0433$ mm</th>
<th>R = 0.1</th>
<th>Plain - ΔK_{th}, $L_{0.1} = 0.0363$ mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain - Sharp</td>
<td>Plain - Blunt</td>
<td>Plain - Sharp</td>
<td>Plain - Blunt</td>
</tr>
<tr>
<td>LM</td>
<td>PM</td>
<td>LM</td>
<td>PM</td>
</tr>
<tr>
<td>0.0273 mm</td>
<td>0.0505 mm</td>
<td>0.0970 mm</td>
<td>0.1836 mm</td>
</tr>
<tr>
<td>-36.9%</td>
<td>16.6%</td>
<td>123.8%</td>
<td>323.9%</td>
</tr>
</tbody>
</table>

- Threshold derived lengths for comparison

- Line Method
- Point Method

$R = -1$ Plain - ΔK_{th}, $L_{-1} = 0.0433$ mm

$R = 0.1$ Plain - ΔK_{th}, $L_{0.1} = 0.0363$ mm

Plain - Sharp
Plain - Blunt
LM
PM
Accuracy evaluation based on the strength assessment

<table>
<thead>
<tr>
<th>R = –1</th>
<th>ΔK_{th} = 9.1 MPa m^{0.5}</th>
<th>R = 0.1</th>
<th>ΔK_{th} = 7.2 MPa m^{0.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain – Sharp</td>
<td>Plain - Blunt</td>
<td>Plain - Sharp</td>
<td>Plain - Blunt</td>
</tr>
<tr>
<td>LM 7.23 MPa m^{0.5}</td>
<td>PM 9.82 MPa m^{0.5}</td>
<td>LM 7.24 MPa m^{0.5}</td>
<td>PM 9.78 MPa m^{0.5}</td>
</tr>
<tr>
<td>-20.6%</td>
<td>8.0%</td>
<td>0.5%</td>
<td>-53.6%</td>
</tr>
<tr>
<td>49.6%</td>
<td>105.9%</td>
<td>35.9%</td>
<td>-58.2%</td>
</tr>
</tbody>
</table>

Results obtained with Plain - Threshold critical distances

<table>
<thead>
<tr>
<th>R = –1, Sharp</th>
<th>R = 0.1, Sharp</th>
<th>R = –1, Blunt</th>
<th>R = 0.1, Blunt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δσ_{N,fl/2} = 87.5 MPa</td>
<td>Δσ_{N,fl/2} = 80.5 MPa</td>
<td>Δσ_{N,fl/2} = 163 MPa</td>
<td>Δσ_{N,fl/2} = 119 MPa</td>
</tr>
<tr>
<td>LM 96.9 MPa</td>
<td>PM 85.0 MPa</td>
<td>LM 148.4 MPa</td>
<td>PM 143.1 MPa</td>
</tr>
<tr>
<td>-20.6%</td>
<td>-2.8%</td>
<td>-9.0%</td>
<td>-12.2%</td>
</tr>
<tr>
<td>49.6%</td>
<td>-0.2%</td>
<td>-11.4%</td>
<td>6.3%</td>
</tr>
<tr>
<td>61.6%</td>
<td>-11.6%</td>
<td>6.4%</td>
<td>6.4%</td>
</tr>
</tbody>
</table>

Results obtained with Plain - Blunt critical distances

<table>
<thead>
<tr>
<th>R = –1, Sharp</th>
<th>R = 0.1, Sharp</th>
<th>R = –1, Blunt</th>
<th>R = 0.1, Blunt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δσ_{N,fl/2} = 87.5 MPa</td>
<td>Δσ_{N,fl/2} = 80.5 MPa</td>
<td>Δσ_{N,fl/2} = 163 MPa</td>
<td>Δσ_{N,fl/2} = 119 MPa</td>
</tr>
<tr>
<td>LM 122.5 MPa</td>
<td>PM 130.0 MPa</td>
<td>LM 143.7 MPa</td>
<td>PM 144.1 MPa</td>
</tr>
<tr>
<td>40.0%</td>
<td>48.6%</td>
<td>-11.8%</td>
<td>-11.6%</td>
</tr>
<tr>
<td>-20.5%</td>
<td>-23.4%</td>
<td>6.4%</td>
<td>6.4%</td>
</tr>
</tbody>
</table>

Not accurate (yellow): blunt for critical distance to evaluate sharper notch strength.
Accurate (blue): sharp for critical distance to evaluate blunter notch strength.
Conclusions

- V-notched specimen for optimal critical distance inversion search.
- All the dimensions provided and discussed, in particular the notch root radius.
- Analytical procedure to derive the Critical Distance both with Line and Point methods.
- 42CrMo4 Q+T experimental data and comparison provided.
- The obtained critical distances dependent on the method, Point Method much larger than Line Method.
- Small critical distance for this investigated high strength steel: accurate assessments only obtained with the sharp notch or the crack threshold derived critical distances.
Optimal notched specimen parameters for accurate fatigue critical distance determination

THANK YOU FOR YOUR ATTENTION!